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Abstract 

This paper summarizes some remarkable issues in fibrous materials, i.e., any 
material systems formed by fiber-like constituents such as felt, cloth, paper, 
muscle and wood.  Such interest can go back as far as Galileo who was 
fascinated by the fact that short fibres can form a long and strong rope via 
friction between fibers induced by twisting, although a relatively rigorous 
account for the mechanism has not been available until recently. It is almost 
exclusively the feature of fibrous materials where pliability, compressibility, 
high toughness and durability coexist, making the material irreplaceable and 
indispensable in many engineering applications. The questions regarding fiber 
packing, flexibility, friction, and fabric formability have inspirited studies not 
only from fiber scientists, but from science communities at large. Furthermore, 
the fiber capillary phenomena and the distinct thermal behaviours of the material 
have provoked many scientific curiosities and endeavours, yielding countless 
practical applications.  Nonetheless, the fibrous materials, arguably the first type 
of engineering materials, remain perhaps the least understood, not to mention the 
fact that most biomaterials, plants or body muscles, are formed by fibrous 
constituents. 
Keywords: fibrous materials, packing problem, friction, flexibility and 
formability, transport properties. 
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1 Fibrous materials 

In a lesser but similar degree, we have been taking fibrous materials, just like air 
or water, for granted; they are so critically indispensable for us that we rarely 
pause to think about them from a materials science point of view. We expect our 
cloth or other textiles (one major portion of the fibrous materials) to be soft, 
pliable, with desirable durability, comfort yet not too heavy; but seldom to 
wonder why and how fibrous materials are able to offer such wonderful 
functions. The seeming ignorance from the scientific community at large has 
lead to current bewildering situation that, the fibrous materials, arguably the first 
type of designed engineering materials, remain perhaps the least understood.  
     The present article is just an attempt to highlight some unique attributes of 
fibrous materials and to explain, as well as the author could, the science behind 
them. Such an account should be useful even now giving the burgeoning 
applications of fibrous materials in new areas such as fibre reinforced composites 
in engineering and fibre-based products in medical and other biological fields; 
after all most biomaterials, plants or body muscles, are formed by fibrous 
constituents. 
     From materials science, fibrous structures can be viewed as a mixture of fiber 
and air, and are not classical continuum, inherently discrete due to the existence 
of the macro-pores. The deformations at the micro and macro levels often are of 
different nature; for instance, when you sitting on a thick wool felt, you are 
compressing the material; but closer examination will reveal that the individual 
fiber is actually experiencing typically bending deformation. Therefore, the 
connections between the formulations from the microstructural analysis and the 
macroscopic performance have to be established as the premises for the discrete 
media study.  
     Owing to the intrinsic random nature of the physical and geometrical features 
of distinct properties, fibrous materials mostly are not isotropic. They respond 
differently when loaded at different directions. Also, various loads have to be 
transferred through the fiber-fiber contact points. Therefore the format in which 
the fibers are arranged in a structure becomes a critical issue; it will determine 
virtually all the properties of the system.  
 
2. Fiber packing problem 
 
It is very logical that research on fibrous materials should start from the fiber 
packing problem, since it deals with the issue of how numerous individual fibers 
arranged or assembled to form the materials of different types. Fiber packing 
formats in terms of the system geometrical features are the critical attributes for 
any practical textile structure, and they will determine each of the individual 
physical properties of the materials including the mechanical and fluid transport 
behaviors. The problem of fiber packing was initially studied by Van Wyk in his 
analysis of the compressibility of wool by looking into the geometrical 
characteristics of a fiber mass formed by fiber packing [1]. Komori and 
colleagues have examined the details of such geometrical features in a fiber 
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assembly, including the mean fiber contact density and the mean fiber length 
between two fiber contact [2], and the fiber and pores distribution in the fiber 
assembly [3]. Pan has taken into consideration of the steric hindrance effect, i.e., 
the interference of existing fiber contacts on the successive new contact to be 
made [4].  So for a fiber mass of volume V, the mean fiber contacts ln per unit 
length are  
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where fl  , fV and ff Dls /= are the fiber length, the fiber volume fraction 

and the fiber aspect ratio, respectively; I  and Ψ are the two factors accounting 
for  both the fiber orientation and the steric hindrance effect, which can be 
readily calculated once the fiber orientation density function is given. The 
reciprocal of ln  provides the mean length between two fiber contact points.  
     The total number of contacts in this fiber mass is 

                                        
)4(

16
3

2

Ψ+
=

ff

f

Vsl
IVV

n
ππ

                           (2.2) 

Note the important roles played by the fiber length fl  and the fiber volume 

fraction fV [4].  
     For a given volume of the fiber mass, there are two competing factors 
affecting fiber contact. On one hand, an existing contact reduces the effective 
contact length of a given fiber and hence diminishes the chance for new contacts 
(the steric hindrance effect). On the other hand, the existing fiber contact point 
will also abate the free volume of the fiber mass, and consequently increase the 
chance for successive fibers to make new contacts.  Some of the research results 
in this area have been applied to study the compressional [5] and shear [6] 
behaviors of general fiber assemblies, leading to considerable progress in those 
areas.  Furthermore, fiber packing problem has also been studied in fiber 
reinforced composite materials [7, 8, 9]. 
     The research on this problem is still very primitive. However, a thorough 
study of a structure formed by individual fibers is extremely challenging. It is 
worth mentioning that the problem of the micro-geometry in a fibrous material 
can be categorized into a branch of complex problems in mathematics called 
Packing problems. Take for example the sphere packing problem, also known as 
the Kepler problem, which has been an active area of research for 
mathematicians ever since it was first posed some three hundred years ago, and 
remains unsolved until even today [10]. Yet, it seems to me the sphere packing 
should be the simplest packing case, for one only needs to consider one 
parameter, i.e., the diameter of the spheres, and ignore the deformation due to 
packing.  Therefore it doesn't seem to be the case that the fiber packing problem, 
with fiber length and diameter highly prone to deformation, can be solved 
completely anytime soon.   
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3. Flexible at will 

One of the main features making fibrous structures the top choice in many 
applications has to do with its bending flexibility while still maintaining high 
tensile stiffness and strength; hence the seemingly eternal popularity of ropes. In 
comparison, a rod of equal diameter and material will be too rigid to even bend 
into a bow, let along to tie a knot. The difference lies in the deformation 
mechanism. In a rope under bending or shearing load, individual fibers in the 
rope will slide or move over each other, given rooms for individual fibers to 
bend into desired shapes. In other word, the fiber is bent in respect to its own 
axis of radius r; whereas in the rod, the bending rigidity is much greater because 
of the greater diameter or bending moment of inertia.  Ideally, a rope of N fibers 
co-axially arranged only has, ignoring the inter-fiber friction, a bending moment 
of inertia  

       I1 = N πr4

4
                          (3.1) 

Where as for a rod of equal mass, the radius R would be    
   R = Nr                           (3.2) 
So the corresponding bending moment of inertia is 

   I2 =
πR4

4
= N 2 πr4

4
= NI1          (3.3) 

That is, the ratio of the two bending moments of inertia would be N. In other 
words, the rope will be N times more flexible under bending than the rod. 
Nevertheless, as we increase the twist on the rope, lateral pressure rises to reduce 
the relative mobility among the fibers as discussed in detail next section, and the 
rope would behave stiffer.    

4. Twist and friction 

Friction is the only mechanism by which fibrous materials are formed. In ropes 
or yarns, the friction is brought into play via tension on fibers of helical 
conformation due to twist. Whereas in a piece of fabrics, the friction takes place 
at the interlacing points of yarns crimped after weaving process to accommodate 
the perpendicular counterparts. This crimp serves the same critical purpose as 
helices in a yarn to provide pressure upon stretching so as to enhance the fabric.  
     Galileo [11] was fascinated by the fact that short fibres can form a long and 
strong rope via friction between fibers induced by twisting, although a relatively 
rigorous account for the mechanism has not been available until recently [12, 13]. 
Staple (short) fibers are assembled into a continuous strand (yarn) by virtue of 
twist, which leads to a spacious helical conformation of individual fibers in the 
yarn. Upon stretching, the tension on the helical fibers will generate lateral 
pressure to bind the fibers together to sustain the stretching as described by 
Hearle [14]. If the external stretching is non-existent, the yarn is just a loose 
structure of collected fibers held together by the weak adhesion and possible 
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fiber entangles; the yarn has virtually no strength.  So it is truly fascinating that 
the very stretching which attempts to break the yarn is in fact reinforcing the 
yarn simultaneously. The twist (the fiber helicity) level obviously determines the 
ultimate outcome.   
     Upon stretching, the tension in the fiber is built up from zero at the fiber ends 
to the maximum somewhere along the fiber length, ideally at the center. The 
tension distribution along the fiber length is linear at the portion of fiber length 
where slippage occurs. But at the portion tightly gripped via inter-fiber friction, a 
hyperbolic tension distribution has been derived by Pan [12]. The distribution of 
the friction-generated shear stress within a yarn was also developed. As we 
increase the twist level to a critical point, a self-locking mechanism takes place 
where fibers are no longer slide over each other in a tensioned yarn. Instead, they 
bind each other to form a thread will considerable strength. Considering a fiber 

with both slipping ends of length flλ
2
1

, Pan [13] has proposed a relationship 

between this slipping proportionality λ  and other related factors as 

                                          λ =
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−
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                         (4.1) 

where n is a factor determined by and increases with the twist level alone for  a 
given yarn system, termed hence the dimensionless twist,  the revised fiber 

aspect ratio s = s(1− λ) ,  the fiber aspect ratio 
f

f

D
l

s = , lf  the fiber length 

and Df  the diameter, μ the fiber-fiber frictional coefficient.  
     When λ  equals to 1, the fiber is completely slipping. As soon as the yarn 
twist level reaches a critical point, the λ  value will drop, revealing that the 
central portion of the fiber is gripped tightly, which in tern leads further 
reduction of λ  until the whole fiber is held over its entire length, and a self-
locking mechanism forms. This whole process in an ideal or a variation-free case 
would take place abruptly as predicted by eqn. (4.1) and plotted in Figure 4.1.  
     However, several complex problems have yet to be solved. First, in all the 
existing analysis, fiber to fiber contact in a yarn is assumed to be line contact. 
Yet in more realistic cases, fibers are in discrete point contact. This will 
completely alter the distributions of both the tensile and shear stresses in 
individual fibers. Also, several competing factors are involved in prediction of 
the optimal twist level at which a staple yarn acquires the maximum strength, 
including the twist level, the fiber volume fraction of the yarn, the statistical 
variations and the complex yarn fracture behavior as discussed in [15].      
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                      Fiber slippage ratio λ 

 
Figure 4.1: Fiber slippage ratio λ vs. the dimensionless yarn twist n. 

 
 
     Knowing the critical role twist plays in generating yarn strength, people tend 
to think yarn twist to fabric strength is just as important as to yarn strength. 
Actually, it turned out that a woven fabric with twist-less yarns can be made, 
which possesses strength at par with ordinary wove fabrics of comparable types. 
So making fabrics using twisted yarn is mainly to facilitate the weaving process 
(e.g., preventing individual fibers from fraying away). Once yarns are in the 
fabric, it is the interlacing points where the fibers are held together via friction. 
In other words, even though twist is not a decisive factor in fabric strength, but 
friction remains the key in not only fabric, but in all other textiles. This makes 
textiles the most efficient, convenient and even smart materials.   

5.  Beauty of drape 

No any other solid sheets or films can fit to a human body or other solid objects 
as elegantly as textile fabrics. Several factors contribute to this attribute.  First, 
the relative movement of the structural components over each other during fabric 
deformation allows the multi-curvature bending, clearly unique only to fabrics 
and critical for its formability as studied by Hearle [16]. Another important 
factor is the unique response of fabrics to different types of stresses.  
     For an isotropic material, there is a simple relationship between the three 
parameters required to define the mechanical behaviour of the material,   
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where E and G are the tensile and shear moduli respectively and ν is the 
Poisson’s ratio of the material.  For normal solid materials, 0<ν< 0.5 so that   

                                             32 <<
G
E

                          (5.2) 

     In other words, the tensile and shear moduli are in the same order of 
magnitude. Whatever the nature of the stress, the resistance of the material to 
deformation is no big difference. However or fortunately, this is not the case for 
fabrics, it is reported [17] that for fabrics 

                                               200→
G
E

                          (5.3) 

depending on the type of the fabric. That is, the fabric will shear easily even due 
to its own weight. Once a fabric is laid onto an object, it will deform in bending 
and shear until it covers the object to the degree allowable by this GE /  ratio.  
Or in other words, the fabric formability is mainly due to the relative movement 
of individual yarns in the fabric subjected to a shear load. Under such load, the 
yarns will reorient through sliding and slipping towards the loading direction. 
This freedom of relative movement of yarns when the fabric is under bias 
extension is the key to offer a very low bending and shear resistance, leading to 
an unusually high  GE /  ratio or an excellent formability.     

6. Unique wetting behavior of fibrous materials  

According to Brochard [18], the so-called Harkinson spreading parameter S can 
be defined as  
              S = γ SO −γ SL − γ            (6.1) 
where γS0, γSL  and γ  represent the surface tensions  of a solid fiber, a solid/liquid  
interface, and  a liquid (or liquid/air).  Then the fiber of radius r will be 
completely wetted by the liquid of thickness e when   

                                         
r

eS γ
>   .                             (6.2) 

Whereas for complete wetting of a flat solid, it only requires 
                S > 0              (6.3)          
     From eqns. (6.2) and (6.3) we see that it is obvious that liquids will wet a 
solid plane more promptly than wet a fiber, or compared to the wetting of planes, 
the wetting of individual fibers is a more energy- consuming process.  
     Next, let us examine the case of a fiber bundle formed by n parallel fibers of 
radius r as seen in Fig. (4.1). For a length L of the dry fiber bundle, its surface 
energy equals to  
                                       SOb rnLW γπ2=                                     (6.4) 
     Once covered by the liquid of radius R, the fiber bundle has the surface 
energy 
                                    γπγπ RLrnLW SLm 22 +=                                (6.5) 



2004  Ning Pan, On Uniqueness of Fibrous Materials, 
Design & Nature II. Eds: Collins, M. and Brebbia, C. WIT 
Press, Boston, 493-504. 

     That is, the energy Wm is composed of both terms of solid/liquid interface and 
liquid/air interface.  The complete wetting sets in when the wet state of 
the system is energetically more favourable compared with the dry one, i.e., 
when Wb > Wm. Or, from previous equations  

                                      0>−−
nr
R

SLSO
γγγ                                          (6.6)    

     Inserting Harkinson spreading coefficient from eqns. (6.1)  into (6.6) yields 

   γ
nr

nrRS −
>                           (6.7) 

     So the critical value SCb for the complete wetting of the bundle system is 

                       γ
nr

nrRSCb
−

=                          (6.8) 

     The liquid radius R could be smaller than the total sum of fibers radii nr. 
Figure 6.1 shows such an example when the cross-section of the 7-fiber bundle is 
covered by a liquid cylinder R=3r. The value of SCb is only -4/7 γ <0.  
 
 

 
 

Figure 6.1: the cross-section of a 7-fiber bundle covered by a liquid cylinder  
                   R=3r. 
 
 
     The above results show that, on one hand, the liquid will wet a solid plane but 
not a single fiber of the same material. On the other hand, the liquid will wet a 
fiber bundle even before it does the solid plane.  The above simple analysis 
explains the excellent wetting properties of a fiber mass, the familiar capillary 
phenomenon, in terms of energy changes. Furthermore, the consequence of the 
collective behaviour of fibers in the bundle allows the energy Wm increasing 
more rapidly with the fiber number n  in the bundle than the dry bundle energy 
Wb. 
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7.  Thermal resistivity versus the fiber volume fraction 

By treating a fibrous material as a mixture of fibers and the still air trapped 
inside the pores formed by the fibers, the system behaviour of the material thus 
becomes a resultant of those of the two constituents. Since air plays a much 
greater role in thermal case than it does in mechanics, some kind of rule of 
mixtures seems more appropriate here to deal with the thermal behaviour of the 
fibrous materials. The simplest form of the rule of mixtures would be 
   λ = Vf λ f + Vsaλsa = Vf λ f + (1−Vf )λsa          (7.1) 
Where λ is termed as the overall intrinsic thermal resistivity of the system; and 
 λi and Vi (i= f, sa) are the thermal resistivity and the volume fraction for the 
constituent i.  For an ideal case, the dashed straight line in Fig. 7.1 plotted based 
on Eqn. (7.1) would offer a simple answer. However, it is of common sense that 
many more factors or mechanisms are involved in heat transport process such as 
conduction, convection via flowing air, radiation and phase change. 
Consequently, the system λ value is a function of all these factors as well. To 
further complicate the matter, the relative contribution of each factor is more 
likely a function of the fiber volume fraction Vf. For instance, as we increase the 
amount of the fiber into the system of given volume, we block convection, 
facilitate conduction and alter the radiation, leading to changing of the internal 
thermal energy of the system, which in turn causes the phase change of the 
moisture in the system. If considering the fact that measurements are normally 
done using the hot plate method where a temperature gradient ΔT is applied on 
both sides of the material, several complex scenarios are expected that we even 
cannot plot a complete curve. First, the lines in Fig. 7.1 becomes non-linear, or 
even non-monotonic; the maxima or minima no longer occur at the two ends 
where Vf =0 or 1. It is also interesting to contemplate the possibility of chaotic or 
even singular points somewhere over the full ranges. 

 

 
 
Figure 7.1: Thermal resistance of fibrous materials vs. fiber volume fraction 
                   (measured via hot plate method). 
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