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ABSTRACT

A micromechanical approach is proposed in this work to predict the initial tensile
response under uniaxial loading of a bonded two-dimensional fibrous network con-
sisting of two kinds of fibers. The probabilities and statistical distributions of the hybrid
bonding points and free fiber lengths between the bonding points in the structure are
first derived, and the deformations of both the fiber segment and the bonding area of
a typical microelement of the network are analyzed and calculated. The analysis of an
arbitrary microelement is then extended statistically to an intermediate level of the
structure, the mesodomain, through which the macroscopic deformations of the struc-
ture are computed. Ultimately, the general expressions of elastic moduli and Poisson’s
ratios for a hybrid fibrous network are obtained. A parametric study examines the
relationships between fiber mechanical and dimensional properties, fiber volume frac-
tions of the two fiber types, fiber orientation distributions and the properties of the
bonding areas, and the tensile behavior of the structure for an ideal planar fiber network.

Many fibrous products such as papers made from
pulped wood fibers and thin nonwoven materials can
be considered planar structures of laid fiber networks.
During manufacturing of these products, fibers are ran-
domly dispersed throughout the suspension and bonded
through various means to each other at intervals along
their lengths to form the structure. Although the fibers
are not strictly randomly distributed within the system
due to the interactions among themselves and also to
the machine flow direction speed during the fiber sus-
pension process, a random orientation representation of
the fibers or an isotropic assumption of the system is
considered an acceptable approximation [8].

As to the assumption of such a fibrous structure as a
two-dimensional planar network, Kallmes [8] stated
that ‘there is relatively little interweaving among them
(fibers), and most of their deviations out of the plane
of the sheet are to accommodate adjacent fibers. Thus,
the two dimensional model of paper is adequate for
most, though by no means all, purposes.”’

Of all the attributes of the fibrous products, the me-
chanical properties are essential in determining their
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performance and applications. Unlike clothing materi-
als, which usually encounter moderate mechanical ac-
tions during wearing, products like nonwoven geotex-
tiles are under much higher loading conditions in
service, so that high mechanical durability and other
relevant properties are vital for their serviceability.
These products’ mechanical properties are also im-
portant because they relate to the processibility of the
products, i.e., they have to be strong enough to cope
with all the loads exerted on them during manufactur-
ing. Because of the high speed and continuous nature
of these processes, any breakage of the fiber web will
severely impair the efficiency of the production.
There have already been various analytic attempts to
study the planar fibrous network. The generally ac-
knowledged pioneer in this area is Cox. In his report
[6], he tried to predict the elastic behavior of paper
based on the distribution and mechanical properties of
the constituent fibers. Kallmes, Perkins, and Page con-
tributed a great deal to this field through their research
work on paper properties. In a series of reports, Kall-
mes and his colleagues {5, 8, 9, 10, 11] extended Cox’s
analysis by using probability theory to study fiber
bonding points, the free fiber lengths between the con-
tacts, and their distributions. Nissan [17] investigated
the nature and strength of the bonding points. Schul-
gasser [29], Rigdahl ez al. [28], and Page and his co-
workers [18, 19, 20, 21, 30] considered the effects of
fiber and bond properties on paper sheet performance.
Perkins and Ramasubramanian {24, 25, 27 ] applied mi-
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cromechanics to paper sheet analysis. Parallel to these ables us to reach some new conclusions about the ¢

studies on paper sheets, articles by Komori and Mak-
ishima [12, 13, 14], Chen and Duckett [4], Lee and
Lee [15, 16], and Carnaby and Pan {3, 22, 23] dealt,
in a broader perspective, with the microstructural char-
acteristics and micromechanical analysis of general fi-
brous assemblies.

The major issue in dealing with the mechanical prop-

erties of any material is the formulation of stress and .

strain, the constitutive relations that govern the me-
chanical response of the material in question. For po-
rous media such as fibrous materials, however, the tra-
ditional continuum approach is often inadequate if one
intends to include the effects of the internal structure
in order to better understand the mechanisms involved
so as to modify the structure or more accurately predict
the behavior of the material. Alternatives to continuum
analyses are micromechanical analyses or, as more of-
ten used, the combination of micromechanics with con-
tinuum theory [1, 2].

The mechanical properties of these porous fibrous
structures depend on the constituent fiber properties
and the total number of fiber-fiber bonds, as well as the
number of bonds per fiber, whereas the number and
distribution of the bonding points are determined by
the orientation and volume proportion of the fibers.
Furthermore, these properties are also related to the
bulk properties of the bonded zones and the spaces or
voids in the network represented as a whole by the fiber
volume fraction V;.

This article is aimed at a hybrid structure in which
a small volume fraction of synthetic fibers is added
to a conventional cellulose pulp. As a result, the ex-
isting problems of conventional papers such as low
toughness and low failure resistance, which have
caused problems in runnability during paper manu-
facturing, will be alleviated. The use of fiber blends
to reinforce material properties has long been a com-
mon and successful practice in textile and paper in-
dustries. A well known example of the latter is to add
pine fibers to standard hardwood pulp to improve pa-
per strength. The analytic investigation using micro-
mechanics on a hybrid fiber network, which we pre-
sent in this article, has not been reported as far as we
are aware. Because of the hybrid nature of the struc-
ture, there are some unique problems to be dealt with,
such as the hybrid bonding points and their proba-
bilities, and contributions from two different con-
stituent fiber types to system performance. Moreover,
compared with previous analyses on paper sheets, the
approaches in our article are based on more strict
mathematical derivations and are therefore formed
into a more systematic theory frame. This in turn en-

relationships between the structural characteristics
and the mechanical behavior of the fibrous systems.
Nomenclature

A cross-sectional area of the system
in direction j

Ap cross-sectional area of fiber type i

b, by, and b,: mean values of microelement
length, free fiber length, and
length of bonded portion

C;: external load in direction j exerted
on each bonding point

C;p and C;,: tangential and normal components
of C;

D, and D: diameter of fiber type i and prob-
abilistic mean diameter of the
two fiber types

E;: system elastic modulus in direc-

tion j

elastic modulus of fiber type i,
transverse -elastic modulus of
the crossing fiber type k, and

Efi, Eflln and Ef,'k:

‘equivalent tensile modulus of a ~

bonding area with fiber £
crossing fiber i

shear modulus of bonding area be-
tween fiber types i and k

moment of inertia of fiber type i

geometric coefficient when b is
projected to direction j

lengths of fiber type i and proba-
bilistic mean length of the two
fiber types

geometric coefficients associated
with the two components of de-
formation caused by 7 in direc-
tion r

proportional factors between b,
Bf, and 1—7,,

total number of bonding points in
volume V, mean number of
bonding points on an arbitrary
fiber, and mean number of
bonding points per unit length
of fiber

probabilities of fiber type i bonded
with fiber type j and of free fiber
segment being fiber type i

Gix:

If,-:

K;:

l; and [:

M,' and M,":

my; and n;.

n, i, and A

P;and P;:

t, and t;;:
of the cellulose fiber type i

fiber bond thickness and thickness W@/
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T;:
‘/f, Vfl ’ and ‘/f2:

Vie and Vy,,:

V, and V,:

Xl, X2 andX3:
0 and ¢:
6, 61’ 62, and 63:

\ 4

6jr9 6jr1, 6jr27

and b3

total external load in direction j
exerted on the system

fiber volume fractions of the total,
fiber type 1, and fiber type 2

effective fiber volume fraction due
to fiber bonding, and maximum
fiber volume fraction without
causing multiple fiber overlap-
ping

fiber volume fraction ratios or

blend ratios for two fiber types

1 and 2, with V, =
V2 = sz/ Vf

Cartesian coordinates

polar and azimuthal angles

total deformation, deformations of
the free fiber segment due to
bending and to elongation, and
deformation of the bonded por-
tion, respectively

statistical mean deformation com-
ponents in direction r due to T,
including total deformation, de-
formation of free fiber segments
due to bending and to elon-
gation, and deformation of
bonded portion, respectively

continuum tensile strain and stress
of the system in direction j

Poisson’s ratio of the system

Vi /Vy and

Hybrid Bonding Points and Their
Probabilities in a Fibrous Network

Suppose the whole system of this hybrid structure
contains two kinds of fibers (a cellulosic as fiber 1 and
a synthetic as fiber 2) with corresponding fiber volume
fractions Vj; and Vj,, respectively. The total fiber vol-

ume fraction is

14

_ Vﬁber

=Va+ Ve (D)

total

The volume fraction ratio of the total fiber volume of
fiber type i = 1 and 2 in the paper pulp is

where

V1+V2=1

Vi
vi=-L,

7 @)

(3)

This is a hybrid fibrous planar network with fibers
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bonded together during manufacturing through a hy-
drogen bond mechanism [17].

One way to deal with such a hybrid fibrous structure
is to consider the probabilities of different bonding sit-
uations between the two fiber types. The bonding points
and the free fiber segments between the bonding points
as well as their corresponding probabilities consist of
the following possible combinations. In the parentheses
below, P; is the probability of fiber type i bonded with
fiber type j, and P; is the probability that the free fiber
segment between the two fiber bonds is a fiber of type
i,le.,

(P,)): fiber type 1 bonded to fiber type 1, = (P,) fiber segment type 1.

(Py,): fiber type 1 bonded to fiber type 2, — (P,) fiber segment type 1.

(P;,): fiber type 2 bonded to fiber type 1, = (P,) fiber segment type 2.
(Py): fiber type 2 bonded to fiber type 2, — (P,) fiber segment type 2.

The values of these probabilities are to be determined.

Characterizing the Microstructural
Components of a Hybrid Fibrous System

A general fibrous structure is illustrated in Figure 1.
As mentioned earlier, we assume that all the properties
of such a system are determined collectively by the
bonded areas, the free fiber segments between the
bonding points, and the volume ratios of fibers and
voids in the structure. Therefore, we have to focus our
attention first on the characterization of this microstruc-
ture or, more specifically, on an investigation of the
density and distribution of the bonding points, the rel-
ative proportions of the bonded portion, and the free
fiber segment between two bonding points on a fiber in
a system of given volume V.

\v

FIGURE 1. A typical fibrous system of volume V.

The approach we use was pioneered by Komori and
Makishima [12], who reported on the microstructural
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characterization of fibrous assemblies where no bond-
ing exists between fibers and only one fiber type forms
the system. Since in our article, we are looking at a
bonded hybrid fibrous network consisting of two fiber

types that differ in both dimensional and mechanical
properties, we have had to modify Komori and Mak-
ishima’s method. For generality, we have developed
the following analyses based on a three-dimensional
system; later we show that the result is readily appli-
cable to our planar two-dimensional network.

We first define a Cartesian coordinate system X, , X,
X, in a fibrous structure. Let the angle between the X,
axis and the axis of an arbitrary fiber be 6, and that
between the X, axis and the normal projection of the
fiber axis onto the X; X plane be ¢. Then the orientation
of any fiber can be defined uniquely by a pair (6, ¢),
provided 0 < @ < 7 and 0 = ¢ =< 7, as shown in
Figure 2.

8.$)

x1

FIGURE 2. System coordinates and fiber orientation.

Let the probability of finding the orientation of a
fiber in the infinitesimal range of angles § ~ 6 + df
and ¢ ~ ¢ + do be (0, ¢) sin 8dd$, where (9,
¢) is the still unknown density function of fiber ori-
entation, and sin @ is the Jacobian of the vector of the
direction cosines corresponding to 6 and ¢.

Suppose there are N fibers of straight cylinders of
diameter D’ and length !’ in the fibrous system. Ac-
cording to Komori and Makishima [12], if fiber A of
orientation (6, ¢) and fiber B of orientation (8', ¢')
are in contact within the volume V, the two fibers will
define a parallelepiped equivalent to that shown in Fig-
ure 3. The bases of this parallelepiped are thombuses
whose sides are of length I’, and the side planes are
perpendicular to the bases and of height 2D’. The vol-
ume v of this parallelepiped is
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Fiber A (8, §)

FIGURE 3. Parallelepiped formed by fibers A and B in contact [12].

v(d, ¢;6',¢') =2D'l"?sinx (4)

where x is the angle between the two axes of fibers A
(6, ¢)and B (6', ¢'), and
sin x = [1 — (cos § cos §’

+ sin 6 sin 8’ cos (¢ — ¢'))*1'"? (5

Unfortunately, as Komori and Makishima pointed

out, in practice the assumption of straight cylinders is
often not the case. Yet others have proved that, for a
monocomponent fibrous assembly, the crimp of fibers,
the noncylindrical fiber cross section {12], and the
length variation of fibers [21] will not affect the valid-
ity of this analysis, so long as the mean fiber length and
an equivalent mean fiber diameter are used in the equa-
tions.

For a hybrid system, however, the dimensional or
geometric differences between the two fiber types have
to be taken into account, since typically these differ-
ences are significant. In our case, the shape of the cross
section of the synthetic fiber is reasonably close to a
cylinder, whereas the cellulosic fibers have collapsed
totally during processing and so possess a flattened
cross section. Consequently, the geometries in the pre-
ceding analysis have to be modified: the lengths of the
sides of the rhombuses may not be the same (should
be ; and /), and the height of the side planes should
be D, + D; instead of 2D'; here i, j = 1 or 2, repre-
senting two different fiber types.

Nevertheless, the volume v of this new parallelepi-
ped can still be expressed as

v(8,$;0',¢') =2DI*sinx , (6)
so long as we bring all the contact probabilities into the
equation and define a probabilistic mean diameter as
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2D =2D,P;, + (D, + D,)Py;
+ (Dy + Dy)Py + 2D, Py, (7)
or
D = D,Py; + (D), + D,)Py; + D,Py, ,  (8)
and a probabilistic mean length as
Il=0LPy+ (L + L)Pp+ LPy . 9

By doing so, we have obtained an equation with the
same expression as Komori and Maklsinma s and have
meanwhile included the effect of the hybrid compo-
nents in the analysis. As a result, Komori and Makish-
ima’s analysis [12] can be applied here, exactly as if
we were dealing with a monocomponent fibrous sys-
tem, provided D and [ are the probabilistic mean values
as defined above. So according to reference 12, the
mean length b between the centers of two neighboring
bonding points on the fiber, as illustrated in Figure 4,
can be expressed as
z_ vV

b= ,

2DLI (10)

where L = Nl is the total fiber length within volume V,
and 7 represents the overall mean value of sin x.

FIGURE 4. A typical fiber in the fiber network and the
mean free fiber segment between bonding points.

Furthermore, if we examine a typical structural ele-
ment of the system in Figure 5, we clearly see that it
consists of two bonded portions of mean length b, and
one free fiber segment of mean length b,. Hence we
have

FIGURE 5. A typical microelement and
the characteristic dimensions.
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b="bs+b, (11)
or

by=b—b,=mb (12)

and
by=nb , (13)

where
m=% (14)

and
m+m=1, O=m=1, and Osnm=1 (15)

are the undetermined coefficients representing the rel-
ative proportions of the bonding portion and the free
fiber length. Two extreme cases are that when m; = 0
and n, = 1, the fibers are totally bonded together,
whereas m; = 1 and n; = 0 represent the case where the
bonded area doesn’t exist.

Because of the different orientations of the fibers, the
lengths of the bonded portions on a fiber vary depend-
ing on the directions of all fibers involved. Conse-
quently, we have to use a procedure similar to that for
denvmg b to obtain the statistical mean values b, and
b,. By examining the views of the bonded portion on a
fiber shown in Figure 6, we have for such an arbitrary
case

D

bb= . ’
s x

(16)

where 0 = x = ~ is the angle formed by two crossing

FIGURE 6. Geometry of the bonding portion.
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fibers whose expression is given in Equation 5. Note
that in Equation 16, when sin x approaches 0, the value
of b, will become infinite, which is of course imprac-
tical. Since in practice the value of b, ranges from D
(fiber diameter) to [ (fiber length), the following con-
ditions are used to confine the upper and lower hrmts
of sin x:

7 — sin”! (l) > x > sin™! ('1‘> , QA7)
s s

where s = I/D is the so-called fiber aspect ratio. This
will eliminate the problem, and the mean value b, can

then be derived as ;
b,=DR , - (18)

where
R= J:df? J: dpsn 8, ¢)J (Q, $)ysind , (19)

and

J'(8, )
=f da'r e’ (8, ¢)———sm9' , (20

where the integral limits 61 v 05’ ¢1 , and ¢2' are de-
termined from Equations 17 and 5.

Now we are able to obtain the values of m, and n
according to the definitions above, and brining in Equa-
tions 10 and 18 gives

b—b, . 8VJR
b ‘ T

(21)

m; =

DL .
where V; = is the total fiber volume fraction of

the system. The value of n, follows as
(22)

Finally the total bond number  in the volume V
containing N fibers, each having 7 bonded points, is
[12] "

m=1-m

(23)

The factor '/ is 1ntroduced to avoid double counting of
each bonding pomt

Deterrmmng the Hybnd
Bonding Probabilities

The total number of bond points » in the volume V
can also be written as
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DL?  D(L;, + L,)? '
=—V-1=(—‘V—I—“‘—)—1 : (24)
where
Li=Nl, Ly=NL, Li+L, =1L,
/ NMi+N,=N . (25)

Ly, L,, N, and N, are the total fiber lengths and fiber
numbers within the volume V, and [, and I, are the
single fiber lengths corresponding to two fiber types,
respectively, whereas N and L are the total fiber number
and the total:fibgr length.
.. Let the overall probability of all possible bonding
cases be P; obviously ..

DL+ L)?
v (Ly + L)
P= 2 Py=1= =
& fu bL7, L?
(26)

Since we have used D (the probabilistio mean diame-
ter) as the diameter for all fibers, the fiber volume frac-
tion ratio can be approximated by

Ve L
V=Ati== = VL . 4
=y ok Lo @
Therefore, it follows from Equation 26 that-
L%+ 2L,L, + Ls? L1 2L114
P= ' ’ ~LZ ’ L2
L? '
+ 17 =Py + P+ sz +Pp , (28)
where
Lzﬂ
Py = Zl{ »
L
P12 = P21 = il;l ’
2
Py = %
Replacing L, and L, yields
V.L)?
Po=U oy, (29)
o MellVoL o
Py =Py == ’rif =WV, , (30)
and
VoL
Py =0 = vy 31)

r

¢
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The probability P; of different types of fiber segments
between the bonding points is given by

Pi=P,+Pp=V?+VV,=V, (32)

and

Po=Py+Pp=V2+VV,=V, (33)

Some Fundamental Concepts in
Treating a Discrete System

Micromechanics is often used to study the mechan-
ical behavior of discrete media from microstructural
considerations and is based on the properties of its con-
stituents. However, the inherent random nature of the
physical and geometric features of discrete media is
fundamentally different from the macroscopic level of
the assumed continuum when using the method of com-
bined microanalysis and continuum theory. Therefore,
the connections between the formulations from the mi-
crostructural analysis and the macroscopic perfor-
mance have to be established as the premises for the
discrete media study. Axelrad [1, 2] has proposed that
in formulating the mechanics of a discrete medium,
three measuring scales should be used to define such a
- system. The smallest scale is called a ‘‘microelement’’
of the structure. It is a typical representative element of
the microstructure of the system on which all the con-
tinuum concepts are applicable, since it is a continuum
by definition. Then an intermediate scale, called a ‘‘me-
sodomain,”’ containing a statistical ensemble of the mi-
croelements follows. The physical and geometric pa-
rameters of the mesodomain are independent of the
positions, and have to be derived statistically based on
the parameters of its constituent microelements. In fact,
the mesodomain is defined as a portion of or as the
representative of the whole system on which the con-
tinuum approach is once again valid, provided only the
effects over distances appreciably greater than the dis-
tance between the microelements are concerned [26].
Finally, a finite number ‘of nonintersecting mesodo-
mains form the macroscopic material body. Three such
divisions clearly illustrate the relationships between the
different structural (from microscopic to macroscopic)
levels, and thus actually provide the natural sequence
of the micromechanical analysis.

The concepts of these three divisions have been ap-
plied, consciously or subconsciously, by previous re-
searchers in dealing with fibrous systems {3, 15, 24].
For the planar fibrous network in this work, it is ad-
vantageous to select the typical fiber bonding unit
shown in Figure 5 as the microelement. Note that al-
though, as pointed out by Kallmes [8], there are sev-
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eral different bonding states existing in paper systems,
the bonding model shown in Figure 5 is by far the dom-
inant form, and so we have adopted it here as the typical
microelement. Based on the analysis in the last section,
an arbitrary microelement can be represented by a no-
tation (b, 6, ¢). The mesodomain of the macroscopic
network is illustrated in Figure 7. The length b, of the
mesodomain will be given later.

FIGURE 7. A mesodomain of the system.

As stated above, our analysis will first focus on a
microelement using continuum approaches. The results
will then be statistically extended to the mesodomain
level. The overall behavior of the system is eventually
derived by applying mesodomain results to the mac-
roscopic medium. ,

There is another issue about the homogeneity as-
sumption of the fibrous systems. When we apply the
well documented continuum elasticity theory to the
system, we actually presume the homogeneity, a prem-
ise for application of the theory. In reality, fibrous sys-
tems essentially consist of two different phases—the
fiber mass and the voids between the fibers. Perkins
[24] made a brilliant comment in this regard. He
claimed, ‘‘The property of heterogeneity depends on
the level at which one focuses attention and the object
of the analysis at hand. For example, all materials could
be considered heterogeneous at a molecular level. A
good deal of the time, however, one is concerned with
some average response of the material which involves
such large aggregates of molecules that it is not only
expedient but completely justifiable to treat the medium
as a homogeneous one.’” As expressed above, we will
apply continuum theory to both the microelement and
the macroscopic medium successively. In either case,
the magnitude of the dimensional scale we focus on is
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far greater than the voids within the internal structure
of the objects, and the objects therefore can be reason-
ably treated as homogeneous media.

Components of the External Loads Acting
on a Bonding Point

Suppose, as shown in Figure 8A, that there is an
external tensile load T} being exerted on a fiber network
in direction j (j = 1 or 2). This load has to be trans-
mitted through each bonding point and sustained by all
these bonding points. Since the orientations of fibers
and their bonding areas are very different, it is difficult
to determine the actual direction and magnitude of the
force C acting on each bonding point. However, if we
cut a cross section of the network and denote all the
components in direction j of the forces acting on the
bonding points as C;, we can see clearly that the resul-
tant force formed by the components C; balances the
external load T; (Figure 8B). Because of the isotropy
of the system, it is reasonable to assume that all these
C; have the identical magnitude, which can thus be ob-
tained directly as

I

G = ) (34)

Cjc3CiCi cj

-

FIGURE 8. External load and load equilibrium: (A) load T; applied
to the system at direction j, and (B) load equilibrium.

where ng, is the total number of bonding points involved
and is to be determined. Moreover, Lee [15] proved
that for a bonding point on an arbitrary fiber 4, ¢),
the force C; acting on this point can be resolved into
the tangential component C;, along the axis of the fiber
and the normal component C;, perpendicular to the fi-
ber axis, as shown in Figure 9. These components for
a planar case can be expressed as [15]
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X2
Cc Cc
3 j
n\ A
| c:lp
/I
-~
®ip l\‘
cj' in
0 X1

FiGURE 9. Force resolution at bonding points.

Cy, = C; sin 6 cos ¢(sin 0 cos @i, + sin @ sin piy) ,

(35)
C,, = C, sin 0 sin ¢(sin @ cos @i, + sin 0 sin piz)
(36)

Cyi, = Gi[(1 — sin? 8 cos? @)i;
— (sin® @ sin @ cos $)iz]l , (37)

Cy = CZ[—-sin2 6 sin ¢ cos i,

+ (1 — sin® @ sin? ¢)i,] (38)

These equations provide us with the relationships be-
tween the orientation of an arbitrary fiber and the forces
acting on it.

Deformation of a Typical Microelement
Under Uniaxial Tensile Loading

In order to continue the derivation, we have to make
the following assumptions:

1. All the constituent fibers of the same type have
identical properties with the fiber axis of symmetry, are
uniform along their length, and are linearly elastic un-
less specified otherwise.

2. Each fiber segment of the microelement is
straight before loading. This assumption is necessary,
as shown below, so that the analysis of fiber segment
deformation will be tractable.

3. Torsional and compressional deformation of the
fiber segments is so small that it is neglected.

4. For simplicity, we focus on the paper structure
before pressing, excluding the severe structural distor-
tion due to high pressure pressing by the machine.

Let us now examine a typical microelement (b, 0,

W
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¢) taken from the system (Figure 9). As specified be-
fore, this microelement consists of two bonding points
with a free fiber segment of length b, between them.
On each bonding point, there are the normal and tan-
gential components C;, and C;, (j = 1, 2) due to the
external loading. The normal components C;, acting on
the two neighboring bonding points form a torque cou-
ple that will bend the fiber segment, whereas the tan-
gential components C;, acting on the two bonding
points will stretch both the bonding portion and the
fiber segment along the fiber axis, as illustrated in Fig-
ure 9. The overall deformation & = §(6, ¢) of the mi-
croelement therefore consists of three parts, similar to
that suggested by Perkins [24]:

8 = Bbeng + Oaxiat + Obondea = O + 62+ 8, (39)

where 6.4 represents the bending deformation of the
fiber segment, 6, is the tensile elongation of the fiber
segment, and Sponaea i the deformation of the bonded
portion.

First of all, considering the structure of the micro-
element in which the fiber segment can be treated as a
beam with built-in ends, the bending deflection of the
type i fiber segment can be readily derived as

i (:jn(zf)3 = (:jn(mlz)s

i= . 40
bt = 3l 3Ed, “0
The elongation of the type i fiber segment due to C;, is
. C,-pm[l;
I | 4
6ax1al Afi Efi ’ ( 1 )

where Ay;, I;, and Ey; are the cross-sectional area, the
moment of inertia, and the elastic modulus of fiber type
i, respectively.

We can obtain the deformation of the bonded por-
tions Spontea from Perkins’ analysis [24], where the
bonded portion of a microelement with fiber type i as
the fiber segment and type k as the crossing fiber was
modeled as a shear lag problem of a strip (the lower
fiber) subjected to an applied load, say, Cj,:

_(E;, tanhK
bl =5 +
. C,,,n,b(Eﬂk K )
Bvondea™ = E, s (42)
2E ANl 1 + 22
! ﬂ( Eflk)
where K = _I_(_,,_;LIZ and
Gy (Ef; + E
K, = |2 (Eni + Enw) (43)
tbtf Ef,'Eﬂk

Here, G,; represents the bonding material shear mod-
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ulus between fiber type i and k, ¢, is the bond thickness,
t;; is the thickness of fiber type i, and Ejy is the trans-
verse elastic modulus of the crossing fiber k.

If we designate an equivalent tensile modulus for the

bonded portion as
. E,:
2E 1+ i)
! ( Efy

Ep=77——T——=v > (44)
i ( E;;  tanh K)
Eflk K
Svondea™™ Can then be expressed in a more concise form:
bonded® = . 4
6 AfiEfik ( 5)

In addition, since we have two fiber types and hence
various bonding situations with different fiber seg-
ments, each having its own probability, the overall de-
formation of such an arbitrary microelement should be
fully expressed as

2
§=08+056,+ 68 =2, [bend’1P;

i=1 .

2 2 ,
+ 3 [Buxia' 1P + Y [vondea™ 1 Pit

i=1 . Rk=1

(46)

Mesodomain Deformation from the
Microelement Analysis

The mesodomain shown in Figure 7 is by definition
a portion of the network and consists of a statistical
ensemble of microelements. The key issue in extending
the analysis on a microelement to this mesodomain is
to obtain the geometric and deformational relations be-
tween the two structural levels. Note that all the mi-
croelements with mean length b in this mesodomain
are distributed with various orientations.

Based on the analysis developed by Lee and Lee
[14], the mean values of the length projections of the
microelements (b, 9, ¢) on the two planar directions
b; (j = 1, 2), as shown in Figure 10, can be derived as

B=bK=>—K . (47)
where
K, = J: db j:' d¢ sin? 8 cos $QUH, &) (48)
and | ' \
K, = J: do J: d¢ sin? 4 sin 8, ¢) (49)
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b2

FIGURE 10. Projections of a microelement.

Unlike the case of a continuum, where we can readily
define the stress on a structural unit by dividing the
external load by the area it is being exerted on, for this
discrete system we have to deal with the individual
contact points instead of the area, since they are the
basic structural units and the only mechanism to trans-
fer and sustain the load. Note also that the number of
bond points in the system depends on the volume con-
cerned. Therefore, it is necessary to designate a me-
sodomain that has a well defined volume or length for
a given cross-sectional area, so that the contact points
in it will be a constant. Considering the physical mean-
ing of by, it is desirable that b; be selected as the length
of the mesodomain, as seen in Figure:7.

Assume without losing generality that this mesodo-
main is taken from a macroscopic system of volume V
with a unit area of cross section, and its length is b;.
The volume of the mesodomain will then be AV
= b;. The number of bonding points in this mesodo-
main can be calculated [14] proportionally as

(50)

Therefore, from Equation 34 in the previous section,
the magnitude of the force on each bonding point
within this mesodomain can now be calculated as

T, _2vT,

¢ ==L
4 n;;j LK_,-

(51)

The mechanical deformation of this mesodomain re-
sults from the deformation of all the microelements in
it. Since the orientations of the microelements and the
acting forces are different and distributed according to
the fiber orientation density function, the statistical
mean values have to be used. The statistical mean §;,
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of the deformation of all microelements within the me-
sodomain in direction r due to the external load T; can
be derived according to Lee and Lee {14] by integrating
Equation 46, the overall deformation of a typical mi-
croelement, over all possible ranges of distribution us-
ing the density function, i.e.;

8, = J: d9 J; ) dps(8, ¢)

= [+5:M;" £ 5M," + &M,

(x:+j=r,—j=r) , (52)

where (from Equations 40 and 46) ‘
~ & C(mp)®
S5 = Z It AShhladl AN
A 3Ely

(from Equations 41 and 46)
) -
X Cmp
=) ——PFP ,

% §1 AsiEyi
and (from Equations 45 and 46)
S, -
33 = 2 Cjnlb

i AriErie

P, (53)

(54)

(55)

Py
are the magnitudes corresponding to the three different
forms of microelement deformation, and M’ and
M,," are the respective coefficients representing the ef-
fects of fiber and load orientation. M, ' can be ex-
pressed [3] as
My = J‘ dé f d(1 — sin? @ cos? )X G, ) sinf
0 0
(56)
M, = f de Jw d(1 — sin? @ sin® $)SUH, ) sinb
0 0
(57)
M, = M = 'r d r d¢ sin® 0 cos ¢QU(0, ¢)
0 [}

(58)
and Mj, can be derived as

M, = f” do J‘u“dd) sin® 0 cos2 pQ(8, d) , (59)
0 0

n = fﬁ do f" d¢ sin® 0 sin? U0, &) , (60)
0 0

and

M, = M = M, = M, (61)
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The expressions of the deformatxon components can be
rearranged as

C;

< —J 3
6 = 34, (mlb) s (62)
5=S(mB) | (63)
Ay
and
c
=Zj(ﬂzb) , (64)
where
A= 1 (65)
1 Pl P2 ’
A, = kl (66)
2 ( P, P, ) ’
EnAn  EpAp
and
1 .
A =
3 ( Pll + P12 P21 + P22 )
EnAn  EnApn  EmApn  EmAp
‘ (67)

Elastic Moduli and Poisson’s Ratios
of the System

The value §;, shown above is the statistical mean
deformation of all microelements within that. mesodo-
main AV = b;. It is actually the overall deformation of
the mesodomain itself of length b, in the direction r due
to the external load T;. Since the mesodomain is part
of the system, we may thus define the continuum strain
of the system as

P
€= f . (68)
J

"2 (69)

where A; is the area of the loading cross section of the
system. In this case, we have A; =:1. Furthermore, we
may define the elastic. moduli of the system as

917
a‘..
E =4
77 ejj
Tb
=12
T M + 6,M," + 6,M,"] G=12) (0)
and the Poisson’s ratios as
5,
Er Eir . . -
er=_"_=_ (]¢raﬂd],r=1,2) (71)
§_j_f 7
b;

More specifically, we can decompose the overall mod-
ulus into three parts representing the contributions from
both the free fiber segments and the bonded portions
of the microelements:

i n z L4 - ______ .
E” 6 ' . E 6 ” v E 3 . (72)

Equation 70 may then be rewritten as .
1
Eu

1 1

1 .
—E En+Em (73)

This form suggests that the whcle system may be
treated as a series system of three elastic elements with
moduli Ej, , Ey", and E;", respecuvely, as commonly
deplcted in Fxgure 11. :

FiGure 11. Analogy of the system modulus and its components.

Furthermore the P01sson s ratios of the system can
be derived as

%E 8.b,
SRS LN
5 &b
bj
. [Eer, + -52Aljr" + 33Aljr”]-bmj (] * k)

= M, + 5,M, + 3.M,"15, 09

Thus, the Poisson’s ratios can be divided into three por-
tions as well:
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— ' ” "
Vijp = Yy + Vi + Vy,

a &M,
[6,M;" + 6,M," + 5:M;"1b,
+— _3_2Mj,"13,l _ _
[6,: M, + 6,M," + 8:M;"1b,
8:M,,"b;
+ = < rd T ’ 7
(6: M + 8,M;" + 5:M;"1b, (75)
where
6 M,'D;
= = — - ., (7
Yr = oM, + 5:M;" + 6M;"1b, (76)
5,M,"b,
'r” = — k. — — , 17
Vi = [8,M," + 6,M;" + &M;"1b, a7
and
erm 63%’ b.i (78)

T [5.My + 6:M," + 6:M;"1b,
are the components corresponding to the bending de-
formation of the fiber segments, the contribution of fi-

ber elongation, and the deformation of the bonded area,
respectively.

Results for an Isotropic Planar System and
the Effect of Fiber Size

In the case of an isotropic planar fibrous network
with a random fiber distribution, there are different
ways of determining the form of the density function
of fiber orientation. We have adopted the one proposed
by Komori and Makishima [12]. We assume that for a
planar case, all the fibers lie parallel to the X; X, plane,
that is § = n/2, and ¢ is randomly distributed uni-
formly over the range [0, 7] due to structural isotropy.
The density function Q in this case was derived in ref-
erence 12 using Dirac’s delta function A as

b, ¢) = i A<0 - %) ) (79)

With this density function, it is quite straightforward to
calculate most of the geometric parameters, such as K,
=K, = 2/nr, My’ = My' = My" = My" = 1/2,
M12’ = le' = Mlz" = M21" = 1/271', I=2/m.

If we substitute all the expressions for T;, b;, and
8, (j = 1, 2) along with the calculated values above
into Equation 72, we eventually get

g L3 (AY (%) A
b4 \rx m,) D*’

1/4\3(V,\ A 1
YAV (¥ \A2 g L
Ey 4(7r) (m,)D”E” 7rRD2A3 > (30)
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where A;, A,, and A5 are still the same as in Equations
65-67. Similarly, we can obtain from Equation 75 the
overall Poisson’s ratio,

, (81)

Vip =Vp =Vy =

3=

a constant independent of fiber properties. Its compo-
nents become

P S
” m [31 + _6-2 + _5.3] ’
yor=l 5,
L T [—6—1 + 32 + 33]
erm 1 b3 (82)

T a6+ 6+ 6]
As for the calculations for m; and n,, by taking [
= 2/7 into Equation 21, we get
“n? — 16V,R
m =, (83)
where R was defined before as the ratio of mean bond
length and the fiber diameter. Substituting the form of
the density function for a randomly distributed planar
system into Equations 18-20 gives

N i
Rez[ a0 J:d¢sin(¢—¢') > 39

where
¢y =¢" +sin™! (l) ,pr=m+ ¢ —sin”! (-1-)
5 s

(85)

Eventually, the explicit expression for R can be cal-
culated using Equations 84 and-85:

o ( 1
arcsin | -
s

R= %ln cot? (86)

2
Although this equation shows that the relationship be-
tween fiber aspect ratio s and the bonding ratio R is in
a rather complex form, R actually decreases monoton-
ically as 1/s increases, so far as the principal value of
the inverse sine function is concerned, because practi-
cally the ratio 1/s = D/l ranges in a limited scope.
One way to test this equation is to try some special
values. That is, when D = 0 or s = ®, R should ap-
proach infinity, as implied in Equation 18. This is true
in Equation 86. Also, when'1/s =1lor!/=D,R =0
according to Equation 86, meaning that in the case,
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where fiber length is equal to its diameter, the bond
length will diminish to zero.

If we compute the first derivative of R with respect
to 1/s, we will have

dR 1 1

dl) i
s

Note that s = 1 is actually a singular point, and there-
fore should be excluded in our discussion. Its practical
meaning is obvious, i.e., a fiber’s diameter cannot be
greater than its length. Furthermore, as shown in
this relation, there is no real solution for equation
dR/d(1/s) = 0, indicating that there will be no extreme
values for R at a given fiber orientation function as we
change the fiber dimensions D and I, and confirming
the monotonic relation between R and s. Keep in mind
that for our hybrid case, the probabilistic mean values
D and ! of the two fibers will be used here to calculate
the value of R.

In the equations above, we calculate the probability
terms P; and P; from Equations 29 to 33, using the
given fiber volume fraction ratios V; so as to provide
values for A;, A,, and A, in Equations 65—-67. Substi-
tuting the results along with given fiber properties such
as Ey;, Iy, Ay, Ea, and V; provided in Table I into the
corresponding equations will produce the numerical so-
lutions of the system properties.

(87)

TaBLE 1. Fiber properties.

Fiber 1 Fiber 2
Item (cellulose) (synthetic)
Young’s modulus, GPa En =41 E;,
Transverse elastic modulus, Eq =032 E; =028
GPa*
Shear modulus of bonding Gpz = 0.11 Gy = 0.11
area®
Between fiber 1 and 2,
GPa
Between fiber 1 and 1, 2 . Gbu =0.11 . szz = (.11
and 2, GPa

Mean fiber length, mm
Mean fiber diameter, mm

L=10 L
D1 = tﬂ =0.017 Dz

Mean fiber thickness, mm tn = 0.017 th =D,
Mean fiber width, mm wn = 0.034 W =Dy
Wat® In=
Fiber moment of inertia I, =24 =D,
12 n
64

" . 7|'D22

Fiber cross-sectional area An = watn Ap = n
* Estimated based on references 7 and 8. ® Assumed.

In Equation 80, there is a term V;/m;, which, as
proven below, is an important structural parameter for

919

a fibrous system. Substituting Equation 21 for m, into
the term gives

Yo ™V

m  m— 8IRV, (88)

Vie
where V;, can be considered as the effective fiber vol-
ume fraction by taking the effect of fiber bonding into
account. If fiber bonding is neglected, we have R — 0
and m, — 1, so that the equation above reduces to V;
= V.. In other words, the equation implies that the
effect of fiber volume fraction has been increased by a
factor,

T S
m — 8IRV;

due to fiber bonding, so that the system becomes stiffer
as though there were more fibers. Furthermore, in order
to insure a meaningful effective fiber volume fraction
i.e., Vs, = 0, there must be from Equation 88

1, (89)

m > 8IRV, or mw<(3) (90)

8

This is the fundamental relationship between the fiber
bond parameter R, which is determined by fiber di-
ameter and length at a given fiber orientation function,
the fiber orientation indicator / as defined in reference
12, and the fiber volume fraction V; of the fibrous sys-
tem. More specifically, as seen in Equation 88, insuring
that V;, is meaningful is equivalent to insuring that m,
= 0 (therefore inequality 89 can also be derived from
Equation 21 by setting m, = 0), which means that when
inequality 90 is violated, the free fiber length between
bonds will no longer exist. The excessive fibers will
then overlap with each other to create a distorted struc-
ture characterized by multilayers, so that the system
will no longer be two-dimensional. Therefore, this in-
equality indicates that for any fibrous system, there is
a maximum value of the fiber volume fraction V;,, that
can be achieved without distorting the system or, in
other words, without causing the multiple fiber over-
lapping. From inequality 90,

m
Vim < (STI)

Calculations and Discussion

(91)

There are two different fiber types in our system.
Comparing the shapes of both cellulosic and synthetic
fibers in the system shows that the latter is closer to the
ideal cylinder assumption, but the cellulosic fibers pos-
sess a flat shape. The parameters of fiber properties are
listed in Table I. The bond thickness ¢, = 0.27 um is
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FIGURE 12. Predicted relationship between R value and fiber type 2 properties: (A) R versus the fiber aspect ratio s, at three
levels of fiber volume fraction ratio V;, and (B) R versus the fiber aspect ratio s, at three levels of fiber diameter D,.

used in Equation 43 for calculation. In Table I, some
key properties of fiber 2 are kept as variables so as to
examine their effects on the system properties to be
predicted.

Using all the relevant equations above and the ﬁber

properties provided in Table I, we can calculate some
of the important microstructural parameters and predict
the system moduli and system Poisson’s ratio as well
as their components. The results of a parametric study
of the effects of adding fiber 2 into the system are il-
lastrated in Figures 12-17.
" We must point out that, based on the assumptions
and the preceding analysis, the system in this study is
highly idealized because machine pressing effects dur-
ing the paper manufacturing process are excluded. Ma-
chine pressing at high pressure will compact a paper
structure; consequently, the fiber volume fraction value
V; of a real paper will be higher than the values we are
going to use in our calculation. Nevertheless, the rela-
tionships. between the system and fiber properties, the
system structure-property correspondences, and other
interconnections revealed and predicted in this study,
which may only be possible for such an ideal case,
should still be useful in understanding the structure and
its mechanical behavior of a fibrous network.

CHARACTERISTICS OF STRUCTURAL PARAMETERS

-For a bonded fibrous network, two structural param-
eters are fundamental in describing the system micro-
structure: first, the ratio of the mean free fiber length
and the mean length of the microelement, m; = Ef/E,
indicating the relative proportion of the free fiber length
to the total microelement length, and second, the ratio
of the mean bond length to the mean fiber diameter, R
= b, /D, representing the bond size relative to fiber
thickness. In our isotropic case, the two parameters are
expressed in Equations 83 and 86. Figures. 12 and 13
are thus constructed to show how these two parameters
are affected by adding the synthetic fiber 2 into the
system. Because we need to know the R value before
calculating m, from Equation 83, we will discuss the
parameter R first.

As we add fiber 2 into the system, Figure 12A shows
that when the diameter of fiber 2 is given, a longer fiber
2 (with a higher aspect ratio s,) will result in a slightly
higher R value, or a greater mean bond length relative
to the mean fiber diameter. Moreover, this relation is
unaffected by the relative quantity ratio V,, since the
curves corresponding to three different V, values co-
incide with each other. Conversely, when the fiber as-
pect ratio s, is fixed, the relation between the fiber di-

—
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FIGURE 13. Predicted relationship between m; value and fiber type 2 properties: (A) m, versus the fiber volume fraction V;at
three levels of fiber volume fraction ratio V,, (B) m; versus the fiber aspect ratio s, at three levels of fiber diameter D,.

ameter D, and R is not as straightforward. There is a
critical level s,,, as indicated by the dotted line on Fig-
ure 12B. When s, < s, a thicker fiber 2 will cause a
smaller R value, and this trend will reverse when s,
> §5,. R becomes independent of the s, value at the
point s, = $y,.

Figure 13a illustrates two facts: First, it tells how a
greater total fiber amount will, as expected, cause a
decay in the free fiber length, revealed by a decreasing
m; value when we increase the total fiber volume frac-
tion V;. Since the value m; cannot be negative, this de-
fines a maximum value V,,, whose expression is shown
in inequality 91, allowable in the system in order to
avoid structure distortion or multiple layers of fibers so
as to maintain a two-dimensional structure. The second
fact Figure 13A implies is that the amount of synthetic
fiber 2 that can be added into the system formed by
fiber 1 alone must be restricted. For instance, if the
original system with the cellulose fiber 1 has the total
fiber volume fraction Vy, then the maximum quantity
of fiber 2 allowable in the system is V, = V;,, — Vj.
The fiber fraction ratio V, has no net effect on m; when
other parameters are given. The size of fiber 2 also has
an influence on my, as seen from Figure 13B: a thinner
or a longer fiber 2 will decrease the m, value. Again,
using the criterion m, = 0, we can find the critical val-
ues for D, and s, to avoid system distortion.

Qualitatively speaking, a higher m, or a smaller R
value will mean a system with. more free fibers and
fewer bonded areas. This usually leads to a fiber net-
work of less bending stiffness. Figures 12 and 13 can
thus serve to improve product performance by choosing
fiber 2 with appropriate properties.

MaxiMUM ALLOWABLE FIBER VOLUME FRACTION V;

Inequality 91 defines the maximum allowable total
fiber volume fraction. Again, for an isotropic system
where I = 2/, Figure 14 gives the relationship of this
total fiber volume fraction and some of the important
variables. For instance, when the diameter of fiber 2 is
given, less fiber volume fraction will be allowed when
its length is longer, i.e., when s, is greater, according
to Figure 14A. Again, this prediction is not influenced
by the relative fiber ratio V,. The effect of D, is similar
to the case of the R parameter: there is also a critical
level of s, in Figure 14B. A thicker fiber 2 could result
in either a greater or a smaller value or could even have
no effect at all on V;,,, depending on the s, level.

SyYsTEM TENSILE MODULUS AND ITS COMPONENTS

Figure 15 shows the relationships between the total
fiber volume fraction V;and the system tensile modulus
E;;,j = 1 and 2. As expected, increasing V, will greatly
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FIGURE 14. Allowable maximum fiber volume fraction V;,, value and fiber type 2 properties: (A) V,, versus the fiber aspect ratio s,
at three levels of fiber volume fraction ratio V;, and (B) V/,, versus the fiber aspect ratio s at three levels of fiber diameter D,.

increase the system tensile modulus. We can also ob-
tain a higher system tensile modulus by increasing the
relative ratio of fiber 2, V,, in Figure 15. We can prove
that a similar result of increased E;; can also be
achieved by using a smaller diameter D,, or a greater
52, or a higher tensile modulus E, of fiber type 2.

We have also found through calculations that fiber
volume fraction and fiber size are more important fac-
tors in determining the system tensile modulus than the
fiber tensile modulus itself. That is why increasing the
amount of fiber 2 in Figure 15 will augment the system
modulus, even though the fiber moduli E, < Ej.

Figure 16 shows the three components of the system
tensile modulus. As indicated in Equation 73, the total
system tensile modulus is the result of a series system
consisting of three components, associated with fiber
bending represented by E;’, fiber extension by E;",
and deformation of the bonded portions by E;". The
modulus components associated with fiber deforma-
tion, including bending and extension, rely heavily on
the total fiber volume fraction V; and the aspect ratio
s2; a higher V; or s, value leads to greater values for
both E;' and E;", as seen in Figures 16A and B. Yet,
V; has no net effect on E;", and a higher s, value ac-
tually reduces E;", as shown in Figure 16B. Compar-
ing the magnitudes of the three components, E;" and

E;" are far greater than the value of E;'. Because of
the nature of a series system like Figure 11, at small
system.strain level, the overall system tensile modulus
E;; is largely determined by the much smaller compo-
nent E;’ or by the effect of fiber bending.

SYSTEM PoIssoN’s RATIO AND ITS Comomzm*s

The system Poisson’s ratio v;,, j, r=10r2,j # r,
as a whole remains constant as revealed in Equation
81, when the effect of the fiber Poisson’s ratio itself is
ignored. However, the three components that form v;,
do vary, depending.on the related parameters. From
Equation 75, v;, is the sum of the three parts—the part
associated with fiber bending deformationv,,’, with fi-
ber extension »;,", and with bond deformation v;,”. In
general and under normal conditions, v;,’ is far greater
than v;” and v;,", as shown in Figure 17, so that v;,
=~ v;,". There are some special cases, however. For
instance, when the total fiber volume fraction V;is at
the critical level approaching the maximum allowable
value in Figure 17A, v;,’ will become negative,
whereas v;," jumps up to a higher value, and v;,” with
a smaller magnitude compares with the other two but
also resonates when V;— V,,,. The fraction ratio-V, has
significant effects on the three Poisson’s ratio compo-

-
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E jj(mpe) nents, as shown in Figure 17B. The influences of D,
40 V;203 and s, are marginal, and the tensile modulus Ej, of fiber
2 has no effect on any one of the three components and
5,2 20.0 hence no effect on the system Poisson’s ratio.
g;:‘;;‘;ig',': In general, as these results show, the system modulus
and Poisson’s ratio for small strains are largely deter-
mined by the mechanism of fiber bending, and fiber
extension and bond deformation are the secondary fac-
tors. However, the relative contributions of the three
deformation mechanisms can be altered by properly ad-
justing the amount of fiber 2 added, as well as its prop-

erties.

¥ 30

| 20
Conclusions

In a fibrous network, there is a fundamental relation-
ship between the fiber orientation parameter /, the fiber
dimensional parameter R, and the total fiber quantity
V;, as represented by the inequality

T
IRV, < (5) ,

—- V¢ meaning that all three values cannot be determined in-
0.05 0.1 0.15 0.2 dependently. Because of this interconnection, for a
given fibrous system, i.e., with given values for / and

v FIGURE 15. E;; versus V; at three levels R, there is a maximum fiber volume fraction:

of fiber volume fraction ratio V,.
Vi< |—)"
= = \8IR
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FIGURE 16. Components of system tensile modulus and fiber volume fraction V;: (A) E;’ versus V; at three levels
of fiber aspect ratio s,, and (B) E;” and E;" versus V;at three levels of fiber aspect ratio s,.
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FIGURE 17. Components of system Poisson’s ratio versus important parameters: (A) components of the
system Poisson’s ratio versus V;, and (B) components of the system Poisson’s ratio versus V,.

Exceeding V;,,, the system will be distorted, that is,
multiple fibers instead of just two will overlap to form
a multilayered nonplanar structure.

The fiber bond area will significantly change the na-
ture of a fibrous system. This effect is reflected by the
effective fiber volume fraction,

VooV
m 7 — 8RIV;

which indicates that due to fiber bonding, the system

behaves as if there were more fibers than there really

are. For instance, in a random fiber orientation case

where I = 2/ with V; = 0.1, assuming a normal value

of R = 3, the difference is

Ve 1 19468 -

Vi 1—0.3<5>
™

That is, the effective fiber volume fraction has in-
creased by almost 100%. Therefore, for a random sys-
tem with high fiber volume fraction, it is desirable even
for a nonbonding fibrous systém to take the fiber con-
tact effect into account. In general, a system with higher
effective fiber volume fraction V;, will show a higher
deformation resistance so as to influence the perfor-
mance of the final products. Therefore, proper control
of V;, by monitoring the parameters m; and R can be a
way to improve product quality.

Deformation due to fiber bending plays a dominant
role in determining both the system moduius and the
Poisson’s ratio. Fiber elongation and bond deformation
only contribute a marginal portion. The relative ratios
of these three parts can be modified by changing the
amount of the reinforcing fiber and adjusting the fiber
properties.

The system modulus is related to many factors such
as the total fiber volume fraction, the properties and
sizes of the two fiber types, and their relative propor-
tions. Fiber volume and size are more important factors
for determining the system tensile modulus than the
fiber tensile modulus itself. The overall system Pois-
son’s ratio, on the other hand, is always a constant,
although its three components vary mainly with the to-
tal fiber volume fraction V; and the fiber volume frac-
tion ratio V,.
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