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Abstract 
This study of woven fabric strength begins by focusing 
on the effects of the crossing points, where warp and 
weft yarns interlace with each other to form a fabric, 
towards the ultimate fabric tensile strength. When a 
fabric is under uniaxial or biaxial tension, the 
yarn-yarn interactions at the crossing points are found 
to consist of two components, a pressure-independent 
adhesive component and a pressure-dependent fric- 
tional one, of which the latter is proved to be dominant. 
On the basis of the analysis, the yarn critical length in 
the fragmentation process during fabric extension is 
defined and calculated. Moreover, by treating the fabric 
as an assemblage of yarn bundles, the distribution 
density function of the strengths between individual 
yarns in the same bundle is provided based on the 
single yarn strength distribution, and the fracture 
process of the bundle can be better described using this 
function. 

Then, by incorporating the critical yarn length into 
the distribution density function of the yarn strength, 
the in situ behavior of the yarn bundle in a fabric is 
predicted. Following the chain of sub-bundle model, 
the mean fabric strength and the fabric stress/strain 
curve are predicted more realistically for both uniaxial 
and biaxial tension cases. 

The predictions of the present theory compare 
favorably with the measured fabric strengths both 
previously reported and tested in the present work. A 
detailed parametric study is also carried out. 

Keywords: woven fabric strength, uniaxial and biaxial 
extensions 

1 INTRODUCTION 

Although biaxial woven fabrics existed long before the 
Industrial Revolution, and fabric manufacturing 
techniques have since advanced enormously, our 
understanding of the mechanical behavior of the 
fabrics is still very limited. 

In the past few decades, instead of simply being 
used as a clothing material, woven fabric has gained 
wider applications in many other areas including some 

load-carrying structural utilizations. Recently, woven 
fabrics have been applied as the fiber preform for 
fiber-reinforced composites. Consequently, it becomes 
increasingly desirable to develop a more advanced 
mechanistic theory governing the fabric responses 
under various loading situations so as to provide a 
powerful design tool for fabric structures in heavy 
load-carrying applications. 

So far, attempts to investigate the mechanical 
behavior of woven fabrics have more or less followed 
three paths. The well-known Peirce geometrical 
model’ has been considered to be the first such 
undertaking. By assuming a woven fabric as a highly 
idealized geometrical object, Peirce was able to 
describe the deformational behavior of the fabric 
under external loading. Painter* and Love3 further 
refined this technique in their analyses of fabric 
properties. Yet, because of the level of ignorance of 
the mechanistic load/deformation relationships and 
excessively idealized features of the constituent yarns 
in the fabric, this technique is very limited in terms of 
reliability and applicability. 

By incorporating the mechanisms of force equilib- 
rium into the geometrical model and lifting some of 
the over-restrained assumptions, the second analytical 
approach was developed. For example, Hearle et a1.4 
carried out extensive studies on the mechanical 
behavior of woven fabrics by applying both geometri- 
cal and mechanistic analysis. Taylo? used a 
mechanical model based loosely on Peirce’s fabric 
geometry to examine the tear strength of a fabric as a 
function of the yarn strength and the force required to 
slip one yarn set over another. Postle et a1.6 applied 
the energy method to determine yarn and fabric 
deformation by minimizing the strain-energy function. 
However, the problem associated with this technique 
is the complicated, often cumbersome, mathematical 
equations. Further study of fabric tear strength has 
recently been reported by Scelzo et a1.7-” 

Another approach is based on continuum mechanics 
by treating the fabric as a continuum laminate. Kilby’ 
was perhaps among the first to apply this approach to 
study the anisotropic nature of woven fabrics, i.e. the 
directional dependence of the tensile modulus. Also, 
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by treating the fabric as a spatially periodic interlaced 
network of orthogonal yarns and by modeling the 
individual yarns as extensible elastica, Warren” was 
able to determine theoretically the in-plane linear 
elastic constants of a woven fabric. The drawback of 
this type of analysis lies in the neglect of the structural 
details and the yarn-yarn interactions in the fabric. 
This technique therefore is mainly applicable to the 
prediction of the elastic material constants rather than 
the strength of a fabric. 

A new stimulation to the study of the mechanics of 
fabrics has emerged since the 1980s from researchers 
in the composites field. Fabrics and other textile 
structures as preform for the so-called textile 
structural composites have attracted more and more 
attention from the composites community. This stems 
from the need for improvements in intra- and 
interlamiar strength and damage tolerance, especially 
in thick-section composites. Textile composites offer 
the potential of providing adequate structural integrity 
as well as shapeability for near-net-shape manufactur- 
ing. The major theoretical contributors in this area 
seem to include mainly Chou and his colleagues, and 
their work is best summarized by Chou,“, Ko and 
Pastore,‘* Pastore and Gowayed,13 Hearle and Du,14 
and Li et a1.15 Largely, the technique in analysing 
woven fabrics of Chou” is also based on the laminate 
theory of continuum mechanics. By treating a fabric as 
a laminate with or without inclusion of the yarn 
undulation (crimping) effect, it was possible to 
establish the constitutive equations for various fabrics. 
Again, this method only leads to the prediction of the 
elastic material constants as well as fabric thermal 
properties, and is unable to tackle the problem of 
fabric strengths which rely primarily on the property 
extremes in the system. Additionally, in all the 
analysis on woven fabric-reinforced composites, the 
yarn-yarn interactions at the fabric interlacing points 
have been ignored. As is demonstrated later in the 
present study, the yarn-yarn interaction at the fabric 
crossing points provides a fundamental mechanism of 
fabric strength enhancement, and it will likely play an 
important role in reinforcing the composite. 

Shahpurwala and Schwartz16 attempted to predict 
the tensile strength of woven fabrics using derived 
strength distributions of the constituent yarns. By 
treating the fabric as a bundle of yarns, they applied 
the statistical theory of Daniel?’ to predict the 
strength of the fabric. They found that when the 
interactions between yarns are ignored, the theoretical 
prediction is as low as a factor of 0.67. They 
concluded that a more realistic prediction can be 
obtained if the fabric is modeled as a bundle of yarn 
segment whose length, termed as effective or critical 
length, is much shorter than the original yarn length. 
By back calculation using the weakest-link scaling 
based on the known fabric and yarn strength 

distributions, they determined the critical lengths 
ranging from a high of 18.7 mm to a low of 6 mm, 
depending on the type of fabrics. Their study proves 
that the mechanical behavior of a yarn in a fabric 
differs considerably from the observed ex situ yarn 
performance. However, this study fails to establish a 
theoretical relationship between the critical sub- 
bundle yarn length and the interactions between yarns 
in a tensioned fabric. Instead, they proceeded with a 
more or less empirical approach. A similar approach 
has been adopted by Boyce et a1.18 and Seo et al.19 to 
more accurately predict the fabric tensile strength. 

There have also been studies focusing on the 
mechanical behavior of fabrics under biaxial loading, 
for instance, as reported by Clulow and Taylor,20 
Freeston et aL.,*‘, Reichardt et al.** and Skelton and 
Freeston. These studies, however, mainly dealt with 
the establishment of the constitutive relationships of 
fabrics specifying the elastic performance, and rarely 
touched the issue of strength prediction. 

Recently Pan and Yoon24 have proposed an 
analytical model to describe the yarn pullout process 
from a woven fabric. This theory is able to predict the 
relationship of the maximum pullout load and the 
embedded yarn length in a woven fabric. The 
maximum load is shown in the theory to be related to 
the yarn-yarn interactions, and the mechanical and 
geometrical properties of the fabric and the yarn. This 
approach is useful in understanding the nature of the 
yarn interactions in a fabric and the structure- 
reinforcing mechanism of woven fabrics. 

The present work is aimed to develop a theoretical 
approach for fabric strength prediction, based on the 
results achieved by previous studies. The basic 
principle in this work is quite similar to the model 
proposed by Shahpurwala and Schwar@ that a fabric 
be treated as a system of chains formed by yarn 
sub-bundles whose length is equal to the so-called 
critical length. One of the major features in the 
present study is the derivation of the expression for 
the critical yarn length, I,, based on the yarn-yarn 
interactions and the mechanical and geometrical 
properties of the fabric and its constituent yarns. The 
yarn-yarn interactions are characterized in terms of 
the adhesive and frictional actions occurring at the 
interlacing points where the yarns in warp and weft 
systems contact and interact. By incorporating the 
adhesive and frictional mechanisms into the analysis, 
we will be able to include the transverse extension 
which enhances the frictional force, and the yarn 
surface topology, which affects both the adhesive and 
the frictional actions, into our analysis. Consequently 
we are able to predict the fabric strength and its 
variation at both uniaxial and biaxial extension cases. 

It becomes known that a fabric is an extremely 
complex structure for mechanistic analysis. There exist 
several structural levels from fibers to yarns and 
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eventually to the fabric. Each level has its own 
geometrical and mechanical variables which control or 
influence to varying degrees the fabric behavior. It will 
be a formidable or even impossible task to include all 
these variables into a fabric model without simplifica- 
tion. This simplification is done in the present work in 
three ways. First, we approximate a real fabric 
structure with an idealized model of more regular 
geometry; second, we exclude in our model the factors 
with ignorable or only marginal effects on the final 
results; last, for the variables included in our model, 
we express those unmeasurable variables in terms of 
the measurable ones. Through these approaches, we 
can retained the essence of the physics but avoid 
unnecessary complexity so as to make our model 
concise, more user-friendly, and easy to apply. 

To begin with, we adopt the following assumptions 
in our analysis: 

1. 

2. 

3. 

4. 

5. 

The tensile strength distribution of the in- 
dividual yarns is of Weibull form. 
The yarn jamming effect during fabric extension 
is negligible. Evidently, this assumption is more 
acceptable when dealing with a fabric with tight 
structure. Moreover, in a biaxial loading case 
where extension is exerted on both warp and 
weft directions, mutually perpendicular to each 
other, the yarn jamming effect during fabric 
stretch is less severe than in a uniaxial loading 
case. 
Variations, and their changes during fabric 
extension, of the structural and geometrical 
parameters of a fabric are negligible. 
The interactions between yarns in a fabric under 
extension will not affect the form of the strength 
distribution function of the individual yarns. 
When a yarn in a fabric breaks, the load it was 
carrying is equally shared among the surviving 
yarns. The effects of stress concentration and 
dynamic wave propagation are ignored. 

2 FABRIC TENSILE STRENGTH AS A 
STOCHASTIC VARIABLE 

A biaxial woven fabric can be treated as an assembly 
of two systems of yarn bundles perpendicularly 
interlaced with each other in a two-dimensional 
format. Therefore, fabric strength is the resultant of 
the yarn strength taking into account the interactions 
between the two yarn systems. 

2.1 Weibull statistics of the strength of a single yarn 
According to the above assumption of the Weibull 
distribution function of yarn tensile strength, for a 
single yarn with length I,, the probability of its 
breaking load being aY can be described by a 
two-parameter Weibull function: 

F(a,) = 1 - exp[ - &a,~$7 (1) 

where (Ye is the Weibull scale parameter, and pY is the 
shape parameter of the yarn. The shape parameter is 
an indicator of the variation in yarn breaking loads. A 
higher pY value corresponds to a lower variation, and 
when BY--+= 30, the variation would approach zero and 
the yarn breaking load would be independent of its 
length. 

The mean or the expected value of the yarn 
breaking load, (TV can then be calculated as: 

(2) 

where I is the Gamma function, and the standard 
deviation of the breaking load is given by: 

L 
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-1 
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(3) 

Y 

It should be noted here that we have established 
these relationships between the yarn tensile strength 
and its Weibull parameters in a generalized manner. 
The effects on yarn strength due to factors such as the 
fiber end slippage in a staple yarn, fiber migration, and 
the fiber obliquity have all been reflected in the values 
of the Weibull parameters. However, it has been 
shown recently by Realff et a1.25 that there has been a 
demonstrated failure mechanism change for short 
fiber yarns, reflected by the change of the value of the 
Weibull shape parameter, By, as a function of the 
gauge length at which the yarn is tested. Since we will 
use in our model the Weibull shape parameter tested 
at the standard gauge length, the effect of this 
observation by Realff et al. will be evaluated in the 
specific examples presented towards the end of the 
paper. 

2.2 The fabric strength excluding the effects of 
yarn-yarn interactions 
The tensile behavior of a fabric would be identical to 
that of its constituent yarns if all yarns were uniform 
in their tensile properties, and if the interactions 
between the two perpendicular yarn systems were 
negligible. Unfortunately, in reality, these two factors 
are too significant to be excluded; this complicates the 
otherwise very straightforward relationship. 

Let us first consider only one yarn bundle system 
where NY yarns form a parallel bundle with no contact 
or interaction between the individual yarns. As there 
is more or less variation between the mechanical 
behavior of the individual yarns in the system, this will 
inevitably lead to a discrepancy between the 
properties of the single yarns and of the yarn bundle. 
Because of the statistical nature of single yarn 
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strength, the yarn bundle strength will obey a 
statistical distribution as well. Based on the analysis by 
Daniels,” for a large bundle of high NY value, the 
density distribution function of the bundle strength ah 
approaches a normal form: 

1 
H((Th) = 60, exp 

_ (uh - %I* 

20; 
I 

(4) 

where G is the expected value of the bundle strength 
and can be calculated from the yarn parameters as: 

(TV = (Z,CX,&,-+i exp 
( 1 

- L 
6 

and Oh is the standard deviation of the strength: 

0; = (Zyayp,)pt[ exp( - i)] [ 1 - exP( - i,]NF1 

(f-5) 

As is well known, the strength of this yarn bundle is 
lower than that of its constituent yarns. This can be 
seen by comparing eqns (2) and (5). The strength 
variation of the yarn bundle is also smaller (depending 
among other factors on its size N,,) than that of the 
single yarn given in eqn (3). 

It is apparent that the tensile modulus of this yarn 
bundle is taken here to be identical to that of the yarn. 

To conclude, the strength variation between 
individual yarns will result in a reduction of both 
mean strength and the strength variation of the yarn 
bundle formed. Furthermore, if the interactions 
between yarns in the fabric are ignored, a fabric can 
be treated as a yarn bundle system in either of the two 
directions, i.e. the longitudinal (the warp) or the 
transverse (the weft) direction, and then eqn (5) in 
fact gives the fabric mean strength per yarn. So, 
according to the above theory, the fabric mean 
strength per yarn, as well as its standard deviation, 
will be lower than that of its constituent yarns, or the 
fabric is weaker than the yarns owing to the property 
variation between the yarns. This conclusion is 
actually in contradiction with the experimental results 
which have shown that the mean fabric strength per 
yarn is generally greater than the mean strength of its 
constituent yarns. Obviously, the main cause for this 
discrepancy lies in the exclusion of the effects of the 
yarn-yarn interactions in the above analysis. As 
shown below, these interactions will reinforce the 
fabric structure so as to achieve a fabric strength 
higher than that of the yarns. As the yarn-yarn 
interactions are determined by many statistical 
variables, this leads to a fabric strength of probabilistic 
or stochastic nature. 

From now on, unless specified otherwise, all the 
analyses will be focused on the warp direction in a 
fabric. 

2.3 Yam-yam interactions at interlacing points, the 
critical length and the in situ yarn strength 
In order to include the yarn-yarn interactions in our 
model, we have to take into consideration the second 
yarn bundle system, which is in the direction 
perpendicular to and is interlaced with the above yarn 
bundle system to form a self-locked planar fibrous 
system-a woven fabric. 

The interlacing (or crossing) points are the major 
locations where interactions between yarns in the two 
bundle systems take place, through which the yarns 
form an interlocked structure. Without the interac- 
tions occurring at the interlacing points, a woven 
fabric would be equivalent to a system of two sheets, 
each made of parallel but isolated yarns; the resultant 
properties would be entirely different from those of a 
practical fabric. In other words, the yarn interaction at 
the crossing points is the essential feature for a woven 
fabric, and will affect more or less all the fabric 
properties. Therefore, these interactions can be used 
as an indicator of, or a probe to, the various fabric 
properties, and, according to Pan and Yoonz4 can be 
investigated through a single yarn pullout test from 
the fabric. 

As revealed by the statistical chain of sub-bundle 
theory first applied to woven fabric by Shahpurwala 
and Schwartz,16 it is expected that yarns, once woven 
into a fabric system, will behave differently due to the 
interactions between yarns in the fabric under 
extension, and the interactions will inevitably alter the 
properties of the yarns. Because of these interactions, 
the fabric is enhanced, and the concept of chain of 
sub-bundle theory can better specify this enhancement 
effect. Based on the theory, a fabric can be considered 
equivalent to a system made of chains of sub-bundles 
of yarns whose length is defined by a critical length I,, 
We are going to derive a theoretical expression for 1, 
in terms of the fabric and yarn properties. 

As stated above, the yarn-yarn interactions in a 
woven fabric mainly take place at the yarn crossing 
points through yarn-yarn contact. However, the 
contact area at an interlacing point between a warp 
and a weft yarn is only partial, as shown in Fig. 1 of an 
idealized illustration of a plain weave. If an external 
tension ay is applied to the fabric, a force equilibrium 
can be established at a differential portion d_x as: 

where, as illustrated in Fig. l(a), t, and wy are the 
shorter and longer axes of the yarn cross section, ry is 
the shear resistance, and L,/2 is the actual contact 
length between yarns, for one contact point. Here L, 
is the circumference of the yarn cross section, i.e. 

L, = 1*517c(t, + WY) - v@Q (8) 
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(a) 

(b) 
Fig. 1. Idealized geometrical features at yarn interlacing 
points of a plain weave fabric: (a) the dimensions of the yarn 

cross-section and spacing; (b) the interlacing angle. 

and rzY is the fabric count (number of yarns per fabric 

length). 

If uy is increased to the current in situ tensile 
breaking load of the yarn, it follows that the yarn 
critical length I, is given as: 

or 

L 
-3 Zyn,l, = uY 
2 (9) 

2 ~,_-cY 
L,% =Y 

It is implied in this equation that the original yarn, 
once embedded in the fabric matrix made of other 
yarns, has to be treated as a chain of statistically 
independent yarn segments of length I, whose value is 
determined by the yarn in situ strength, yarn size and 
the interactions between yarns as specified in the 
equation. 

Furthermore, as indicated by Henstenburg and 
Phoenix,26 the actual fragment lengths are not a 
constant and vary in the range ZJ2 to I,. This problem 
can be solved by replacing 1, with the mean fragment 
length 3lJ4 if a uniform distribution of this length is 
assumed. For simplicity however, we still use eqn (10) 
for the present study. 

More importantly, the fragmentation process has 
revealed that during the extension of the fabric, the 
yarns are stretched segment by segment through 
fabric. So, because of the strong strength-length 
dependence of yarns, the strengths of these yarn 
segments will become higher owing to their shorter 
lengths. 

Also, during the fabric extension, by definition any 
yarn fragment with length longer than 1, is still able to 
break somewhere along its center section as its stress 

exceeds its current in situ strength, a,,. Therefore, the 
mean length before yarns break into lengths 1, will be 
41,/3. This will be the length by which the value of Us 
for the new yarn fragment is determined. Keeping this 
in mind and combining eqs (2) and (10) gives: 

The in situ yarn strength, fly, can then be determined 
from eqn (2) replacing the original yarn length, I,, by 
the critical yarn length, I,, to reflect the yarn-fabric 
interactions. 

To accommodate other weave structures besides the 
plain weave, the above equation can be rewritten as: 

I, = [&(Z oy)-d”(l + $)l”“(‘+Py’ (12) 

where C, represents the length of the yarn-yarn 
contact area. In the case of plain weave, we have as 
above C, = L,/2. 

2.4 The components of the shear resistance zr at 
yam contact area 
Even with a fabric made of yarns whose weight is so 
light as to be negligible, a certain force is still required 
to pull a yarn out of the fabric by overcoming the 
resistances between the yarn contact points. Yet the 
magnitude of this pullout force will increase 
significantly when certain pressure is applied at the 
contact points. In other words, there exist two 
components of the shear traction ry which resists any 
attempt of relative yarn movement at the contact area. 
Of the two components, one is pressure-independent 
adhesive force termed zy2, and the other is 
pressure-related frictional force r,,i governed by the 
friction law as explained above. That is 

ry = Tyl + 7y2 (13) 

The pressure can either be applied directly to the 
fabric surface, or be generated from tensile load 
exerted uniaxially or biaxially to cause a tightening 
effect to the fabric so as to increase the pressure at the 
yarn contact points. 

Assume the fabric is under a biaxial loading case 
where the load uL is applied in the warp direction and 
the load CT in the weft direction as seen in Fig. 2(a). 
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Fig. 2. Various forces on a plain weave fabric. (a) Biaxial 
loading on the fabric; (b) cross-section along a weft yarn; (c) 

forces at an interlacing point. 

These external loads will create a pressure, P, at each 
contact point shown in Fig. 2(b) and (c) of a 
cross-section of the fabric. 

The compression force, P, is exerted on a contact 
point of two crossing yarns with circumference L, to 
cause a frictional force pP where /_L is the frictional 
coefficient. This frictional force is balanced by the 
shear force r,,% through: 

ry1 c, = rQ (14) 

So the frictional component of the shear resistance is: 

PP 
Tyl =r (15) 

The resulting normal compression force P as shown 
in Fig. 2(c) can be calculated as: 

P = (2~~ sin & + 2crL sin 8,) (16) 

where 0, (i = T, L) are the interlacing angles at the 
longitudinal and transverse directions, respectively, 
and can be expressed from Fig. l(b) as: 

8 = arctan = arctan(4t,n,) (17) 

Since our ultimate goal is to determine the fabric 
tensile strength in one, say the warp, direction when 
the fabric is under a biaxial loading situation, the 
involvement of the warp stress cr, in eqn (16) brings 
considerable difficulty for further analysis. To simplify 
the result, we need to study the ratios &CT,_ and 
sin B&in 0,. It is not hard to conceive that when we 
increase crL, the value of 8, will decrease, and a 
similar connection exists between a?- and 0,. 
Supposing an identical geometry in both directions of 
the fabric, we can therefore assume a relationship: 

or 

CT sin oL -= (IS) 
gL sin C!& 

UT sin & = ffL sin & 09) 

So eqn (16) becomes: 

P = 4uT sin I& (20) 

It has to be pointed out, however, in the case of 
uniaxial extension where UT = 0, the value of P will 
not be zero because of the contribution from the 
existing force aL> 0. Yet, as to be proved later, this 
contribution will be reduced as the fabric is only 
tightened in one direction with the load applied, and 
there is an absence of the lateral extension @r 

Combining eqs (15), (17) and (20) yields the first 
shear resistance component: 

ZYl = F uT sin[arctan(4tyny)] (21) 
Y 

The second component of ry can be derived based 
on the analysis of Pan and Yoonz4 on the yarn pullout 
behavior from a fabric. When a yarn is pulled out 
from a woven fabric, the maximum adhesive surface 
force pm at one contact point was derived as: 

22 w pm=--21 
P 

tanh 2pwy 

where r, is defined as the elastic shear strength of the 
contact area, and p is a factor reflecting the 
geometrical and mechanical properties of the yarn: 

$_ Y d G 

tY nEY 
(23) 

where G,/E, is the ratio of the longitudinal shear 
modulus and tensile modulus of the yarn. Similarly, 
this force is balanced by the second shear resistance 
component ry2 as: 

L 
2- 

32 2 -Pm 
Note that the between yarn distance by = l/n,. 
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or 

z 
4,&w, 

Y2 
= - tanh 2pw, = 

22 w 

L 
-Z-J tanh 2pw, 
CYP 

(25) 
YP 

independent of loading situation and directions. 
As shown above, zy2 value is determined by the 

yarn mechanical properties G,/E, and the geometrical 
property or the ellipticity of the yarn cross-sectional 
area wylty. 

2.5 The fabric strength as a stochastic variable 
In view of the preceding analysis, the strength in the 
warp direction of a practical fabric a, has also to be 
treated as a probabilistic or stochastic variable and its 
mean value can be obtained from: 

and the standard deviation: 

or_ = v@,(I,) (27) 

where V, is the overall fiber volume fraction of the 
fabric, and E and Or, are the mean yarn bundle 
strength and its standard deviation which can be 
calculated from eqns (5) and (6), except that the yarn 
length I, in the equations has to be replaced by the 
critical length I, defined in eqn (12). This step is 
crucial so that the effect of yarn-yarn interactions can 
be included. For convenience, in the following 
sections, we will use the same format such as &,(Z,) to 
designate a strength b and the length I, at which the 
strength is determined. 

Then the distribution density function of the fabric 
strength in the warp direction can be expressed from 
eqn (4) as: 

3 THE STRESS/STRAIN CURVE OF A 
FABRIC 

Suppose the single yarns used for this study are of 
linear mechanical behavior prior to failure. The yarn 
properties such as the tensile modulus, yarn surface 
and cross-sections as well as fabric parameters are 
provided in Table 1. 

For a fabric of length 1, under a given external 
strain l L high enough to cause yarn breakage, the 
yarns in the fabric will not fail at the same time 
because of the variations between the yarn strengths. 
Instead, they will break gradually according to their 
strength distribution over a certain range of the stress 
EyeL. Therefore, the fabric tensile stress CT, can be 
expressed as: 

(+L = ~L(W&Y~L (29) 

Table 1. The assumed property values for calculation 

Property Typical 
value 

Unit 

Fiber density, pt 
Fabric fiber volume fraction, V, 
Fabric width, w, 
Yam tensile modulus, E, 
Thread shape parameters, p, 
Thread scale parameter, c+ 
Yarn cross-section ellipticity, w,/r, 
Inter-yarn frictional coefficient, p 
Fabric count, ny 
Number of yarns in fabric, NY 

1.30 g/cm3 
0.5 

254 
1.1 (!I% 
4.0 
5.0 GPa-PY/mm 
1.4 
0.3 
3.9 mm-’ 

100.0 

where E, is the yarn tensile modulus, V, is the overall 
fiber volume fraction of the fabric, and YL(l,) is the 
fraction of the number of warp yarns that are not 
broken yet at the current stress level EyeL and are still 
carrying the load. This surviving yarn ratio can be 
calculated according to Pan:27 

(30) 

where H(v,,) is the distribution density function of the 
yarn bundle strength defined in eqn (4). 

4 CALCULATION AND DISCUSSION 

It has to be pointed out that the main focus of the 
present study is to develop a probabilistic model to 
predict tensile fabric strength. Therefore, when we 
apply the existing theories on the fragmentation 
process in our analysis, we only use the most widely 
accepted, instead of the most advanced, theoretical 
results so as to avoid distractions and additional 
complicities. Our model could, of course, be improved 
by using it in conjunction with the most recent 
theories. 

4.1 The yam cross-sectional dimensions 
In the present case, the parameters describing the 
yarn cross-section including the yarn width wy and 
thickness ty are the ones that have no convenient and 
reliable way to be measured. However, they can be 
replaced with others which are easier to measure or 
are more familiar in practice. 

It is rational to assume: 

WY- 
, - al (31) 
kY 

or 
wy = aIt, (32) 

The value of a, has been assumed to range from 1 to 2 
based on our experimental observations. 

There also exists a relationship: 

t, + wy = D, (33) 
where D, is the nominal or equivalent diameter of the 
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yarns with the assumption of circular yarn cross- 
sections which can be calculated as: 4 

0, (mm) = 2 
J 

tex 

V&JO5 
x 10 

where tex is the yarn number, pf is the fiber density in 
g/cm3, and Vfy is the fiber volume fraction of the yarn 
which is different from, usually greater than, the 
overall fiber volume fraction of the fabric, V,, which 
appeared in eqn (29), because of the existence of the 
inter-yarn spaces in a fabric. We can solve from above 
equations the yarn thickness: 

2 
d 

tex 

ty (mm) = 
7rpfv,lo5 

1 +ar 
x 10 (35) 

Unless stated otherwise, for fabrics of different fiber 
types used in this study, by using pf = 1.30 g/cm3 for 
acetate fiber, 1.38 g/cm3 for PET and 1.51 g/cm3 for 
cotton fibers,” and assuming identical values al = 1.4, 
and V, = O-628, we thus calculated their t, values. 

4.2 Determination of the yam-yarn adhesion 
The shear resistance at a yarn-yarn crossing point has 
been proved to be: 

ry = r,1 + ry2 = F (+T sin[arctan(4t&)] 
Y 

+ 2GWy 
- tanh2pw, 
CYP 

(36) 

The frictional component rYl is dependent on the 
external pressure, whereas the adhesive component 
zY2 is entirely determined by the surface geometry and 
properties of the yarns, and is hence an intrinsic 
system property irrelevant to the external loadings. 
Furthermore, the force rY2, or the elastic shear 
strength of the contact area r,, can be determined 
theoretically. 

Assume there is no external load or pressure 
exerted at the yarn-yarn contact area so that ryl = 0 
and we have the shear traction as: 

22 w 
ZY = ryz - - --LJ tanh 2pw,, 

GP 

If we then pull a yarn out of the fabric, the critical 
yarn length at which the yarn will break within the 
fabric rather than be pulled out is still 1, defined in eqn 
(12), but at the condition rY = ry2. The force 
equilibrium on the yarn at breaking becomes: 

2y2CynyEc = $1,) = (lc~y&-8: exp 
C ) 

- $ (38) 
Y 

Since all other variables can be considered as given, 

the value of ry2 or r, can be obtained by solving the 
above equation. It is found during the calculation, 
however, that the magnitudes of both ry2 and r, are 
extremely small. Therefore, their effects on the 
following calculations are in fact negligible. In other 
words, between the two shear resistance components, 
the frictional component is far more dominant than 
the adhesive one when external load exists. To 
simplify the process, we use in the following 
calculations: 

2, = Tyl (39) 

This shear force r,, is in fact a reflection of the 
‘shear bonding strength’ of the yarn-yarn contact 
point, and is related to yarn surface frictional 
behavior, and the transverse tensile load c+- as 
indicated in eqn (21). Figure 3 depicts the relationship 
between ryl and the variables involved. For easy 
comparison with experimental results later, the 
transverse tensile stress a, is expressed as N per 
thread, and the unit for r,,r follows as N per contact 
point. Here the yarn number tex = 40.0 and inter-yarn 
frictional coefficient p = 0.3 are used in the figure. 

As indicated in eqn (21), the value of rYl increases 
linearly with the transverse tensile load UT. A flatter 
yarn cross-section, represented by a higher ellipticity 
of the yarn cross-sectional area, WY/t,, will result in a 
lower shear force ryl, when the thread count nY and 
the fiber volume fraction of the yarn Vfy are given as 
shown in Fig. 3(a). The effects of both Vfy and ny, on 
the other hand, can be seen in Fig. 3(b) where CT and 
WY/t,, are given. It is indicated in this figure that a 
higher Vfy or ny, i.e. more fibers in a yarn or more 
yarns per unit fabric length, will lead to a higher zyl 
value. However, n,, has a more substantial effect on ryl 
when V, is greater. 

In summary, at a given level of the transverse load 
a,, for a less flat yarn, a denser fabric will result in a 
higher shear traction rYl, or a stronger ‘bond’ at the 
contact point between yarns. 

4.3 The critical yam length 1, 
Because of the mutual restraints between the warp 
and weft yarns, these yarns in a tensioned fabric will 
each behave as a series of sub-bundle systems made of 
links of length I, whose value is determined from eqn 
(11) by the mechanical and geometrical properties of 
the yarn and the fabric system. A relative scale 1,/l, is 
used here, where L, = 152*4mm is the original yarn 
(fabric) length. Note that the effect of the length 
discrepancy between a fabric and a yarn from the 
fabric, which is caused by yarn crimping within the 
fabric, is neglected here, since it has been dealt with in 
detail elsewhere.16 

The ratio 1,/Z, is an indicator of the interactions 
between yarns during fabric extension, and a smaller 
1,/Z, value reveals a greater reinforcing effect due to 
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Fig. 3. Frictional component, z,, of the shear force at a 
interlacing point: (a) zYl versus transverse tension, uTT, at 
three levels of elliptic&y WY/t, yarn cross-section; (b) zYl 
versus fabric count, n,,, at three levels of fiber volume 

fraction, V,, of yarn. 

the yarn-yarn interactions in a tensioned fabric. The 
key factor for the determination of 1,/l, is the ‘shear 
bonding strength’ zY at the yarn interlacing points. 

Figure 4 illustrates the relationship between 1,/Z, 
and the transverse load aT at different levels of the 
yarn Weibull parameters. In general, the ratio 
decreases at increasing transverse load a,. This 
relationship is also influenced by the values of the 
Weibull parameters of the yarn. For example, a 

I 
0.2 0.4 0.6 0.8 lCN%m) 

Fig. 4. Effects of variables on 1,/l, ratio: (a) 1,/l, versus 
transverse tension, uTT, at three levels of shape parameter, 
/3,,, of yarn strength; (b) 1,/Z, versus transverse tension, a,, at 

three levels of scale parameter, q,, of yarn strength. 

smaller value of the shape parameter pY of the yarn 
strength, meaning a thread with greater strength 
variation, will lessen the reinforcing effect, leading to 
a higher 1,/l, value as seen in Fig. 4(a), whereas in Fig. 
4(b) a greater scale parameter (Ye will intensify the 
interactions and enhancement resulting in a smaller 
1,/l, value. 

On the other hand, it is clear that the mean fabric 
strength per yarn would be greater than the mean 
yarn strength only when the ratio 1,/l, < 1; this is in 
fact the critical condition for the fragmentation 
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process to occur. It in turn defines the critical values 
for all other variables involved in order for the 
reinforcing mechanism due to yarn-yarn interactions 
at the interlacing points to function. For instance, this 
critical condition 

1, 
I (40) 

can be used to define the minimum value of the 
transverse tensile load gT in order to yield a stronger 

0.008, 
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Fig. 5. The critical value aTlaY ratio: (a) ~~/a;(&) 
versus original yarn length, I,, at three levels of eliipticity 
w,/t, of yarn cross-section; (b) o,/a,,(l,) versus fabric count, 
nY, g three levels of fiber volume fraction, V,, of yarn; (c) 
gT/uY(lY) versus shape parameter, & of yarn at three levels 

of inter-yam frictional coefficient j.~. 

5 10 15 2OPY 
Fig. 5. (Continued.) 

fabric. From this condition we can find the solution in 
relative scale c+T/(<(ly)) by combining eqns (2), (12) 
and (21) with some mathematical manipulations: 

UT 3if; 1 -= - 
+(ly) 0 4 4~ sin[arctan(4ry~,)]ZYn, (41) 

where a,(/,) is the mean yarn strength at original 
length 1, from eqn (2). 

Figure 5 is thus constructed using the above 
equation to provide the critical levels of all related 
variables under which the mean fabric strength per 
yarn will be greater than the mean yarn strength. It is 
seen from the figure that, when all other conditions 
are given, a longer original yarn length l,, or a less flat 
yarn cross-section with smaller w,,/t,, from Fig. 5(a), or 
a higher fabric count IZ~ or a smaller yarn fiber volume 
fraction Vfy in Fig. 5(b), as well as a higher value of 
the inter-yarn frictional coefficient p in Fig. 5(c) will 
require a lower transverse tensile load UT to trigger 
the fragmentation process. It is seen in Fig. 5(b) that 
at very high fabric count, ny, the yarn fiber volume 
fraction will have little influence. It is also shown in 
Fig. 5(c) that the shape parameters of the yarn 
strength, py, once exceeding a certain value, around 5 
in the figure, will have a much less significant effect on 
the required Vahe Of u-&&l,). 

4.4 The reinforcing effect of yam-yam interactions 
on fabric strength 
As stated above, the mean strength of a bundle of 
yarns will be lower than the mean strength of its 
constituent yarns due chiefly to the statistical 
variations of the yarn strengths between the individual 
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yarns. On the other hand, once the bundles are 
interlaced with each other to form a fabric, upon 
tensioning of the fabric, the interactions at the 
interlacing points between yarns will considerably 
alter the yarn behavior from its ex situ state, and as a 
result, the so-called fragmentation process will occur 
which will increase the mean strength of the fabric. 
The ultimate value of the fabric strength thus becomes 
a result of these two competing factors. Since eqns (2) 
and (5) already provide the results showing the 
influences of the first factor, we need to design a 
method where only the second factor, namely the 
effects of yarn-yarn interactions in a tensioned fabric, 
remains to be effective so as to show its effects. One 
convenient way to do this is to examine the ratio - - - 
aL(ZJ/aL(I,) where a&) and z(Z,) are the fabric 
strengths with and without inclusion of the fragmenta- 
tion effects; both of them are calculated from eqn 
(26), except that the critical yarn length I, and the 
original yarn length 1, are used, respectively. Since 
eqn (26) is derived from the result of the mean 
strength for yarn bundles, the effect of the strength 
variations between individual yarns is thus excluded in 

_ 
- - 

the ratio G&,)/uL(~,). 
This fabric strength ratio is then plotted against the 

lateral extension o, in Fig. 6. It can be readily proved 
that: 

(42) 

The effects of the Weibull scale parameter of the 
yarn strength (Ye on the ratio 1,/Z, is already illustrated 
in Fig. 4(b) and is therefore excluded in the following 
figures. We have to retain, however, the shape 
parameter & in our discussion because of its 
involvement in the expression (l,/Z&. 

First of all, it is seen from all the curves in Fig. 6 
that the value K(l,)/<(1,) is always greater than one, 
and increases as the lateral tension flT gets greater, 
indicating that the yarn-yarn interactions always 
enforce the fabric structure, and the reinforcing 
mechanism becomes more significant as the interac- 
tions intensify; the tensile strength of the fabric thus 
grows higher and higher with an increasing UT value. 

On the other hand, the impact of uT on 
$l,)/~(I,) is also dependent on the levels of other 
variables. The effects of the shape parameter & of 
yarn strength are shown in Fig. 6(a): a higher /I,, value 
results in a lower %(l,)/K(1,) value. In addition, at a 
given CT level, a fabric with more yarns per unit 
length, i.e. a higher rzY value in Fig. 6(b), or yarns with 
less flat cross section of a smaller w,,/ty value in Fig. 
6(c), or a higher inter-yarn frictional coefficient p in 
Fig. 6(d), or a less dense yarn with a lower V, value in 
Fig. 6(e) as well as a thicker yarn with a higher yarn 
number tex in Fig. 6(f) will all result a stronger fabric 

- 
compared to the mean fabric strength ~~(1,) ignoring 
the yarn-yarn interactions. 

4.5 The stress/strain curves of fabric under uniaxial 
and biaxial loadings 
The stress/strain curves of a plain weave fabric under 
uniaxial and biaxial loadings can be obtained using 
eqns (29) and (30) and the data in Table 1 by setting 
the transverse tension CT at zero and at different 
levels. Figure 7 shows the results. Note the vertical 
axis in the figure is expressed in a relative scale of 
a,/E,, where E, is the yarn modulus whose value is 
provided in Table 1. It can be concluded from Fig. 7 
that increasing the transverse tension UT Will yield 
both a higher breaking strain and a higher strength for 
the fabric. It will not, however, affect the modulus of 
the fabric. Apparently, some of the mechanisms at the 
initial stage of fabric tensioning such as decrimping4 
are excluded from the model so that the predictions 
deviate from the real situations at the initial part of 
the stress/strain curves. 

4.6 The effects of weave structures 
All the preceding equations are derived based on a 
plain weave structure. The different weaves will affect 
the nature of the crossing points, i.e. the actual 
yarn-yarn contact area and the pressure between the 
yarns per contact. However, from eqns (12), (21) and 
(39), we found that the yarn-yarn contact length 
(area) C, is cancelled when calculating the yarn 
critical length I,, and hence has no net effect on fabric 
strength. 

An idealized illustration of major weave structures 
is provided in Fig. 8. Through some simple 
geometrical and mechanistic analyses and based on 
the plain weave case dealt with previously, for a 2/l 
twill in Fig. 8(a), we can obtain the approximate 
compression force per yarn-yarn contact point: 

P=ipTsin & 

For a 3/l twill weave in Fig. 8(b), we have: 

(43) 

10 
P = 4 UT sin & = 2.5u, sin &- (44) 

For a 4/l satin illustrated in Fig. 8(c), we can prove: 

12 
P = j- (TT sin 8T = 2.4~~ sin eT (45) 

Bringing a specific P expression into eqns (20) and 
then (21) will yield the results corresponding to the 
weave structure. 



322 

(a) 

(cl 

083 0.4 005 0.6 0.7 0,8 0,9 
CTT 

~(N/Y-) 

1.57 - 
2 = 1.0 

1.45. A@ 

T = 2.0 
1.4, 7 = 3.0 

1.35. 

I “” GT 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1(N/yam) 

N. Pan 

(b) 

(4 

1.55. 

1.5. 

1.45, 

1.4. 

1.35. 

1.3. 

1.25. 

1.2 

I 

’ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

oL( L) 

cJ,c ‘y) 

OT 
(Nf~am) 

1.5. 

1.45 

1.4. 

1.35. 

1.3. 

“’ OT 
’ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l(~/~arn) 

Fig. 6. The strength ratio a,(l,)/a,(l,) versus transverse tension, v~, at three levels of: (a) shape parameter, & of yarn 
strength, (b) fabric count n,; (c) ellipticity, w,/ty, of yarn cross-section; (d) inter-yarn frictional coefficient p; (e) fiber volume 

fraction, I$,, of yarn; (f) yarn number (tex). 

4.7 Comparisons between the predicted and tested (1) in this analysis. Yet the conversion between the 

fabric tensile strengths two can be easily accomplished using the relationship: 

First, we compare the predictions of the fabric mean 

strength using eqn (26), to the results reported by 
Shahpurwala and Schwartz.16 The fabric samples used 
by them16 are introduced in Table 2 with their ty 
values calculated from eqn (35), and the correspond- 
ing Weibull parameters of the yarn strength are 
reproduced in Table 3. Note that the scale parameter, 
designated as LY,,~ in Table 3 was defined slightly 

differently in Ref. 16 from the one, ay2, used in eqn 

According to Ref. 16, the yarn length I, = 152.4 mm. 
So the calculated (yy2 values are also listed in Table 3. 
It is worth noticing that the physical meaning of CY,,~ is 
the stress level at which 63.2% of the yarns will break. 
Since there is usually +,I > $Z,), meaning no more 
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than 63.2% of the yarns will fail at the stress level 
equal to the mean yarn strength <(l,) of eqn (2). 

Table 4 provides comparisons between the pre- 
dicted results by Shahpurwala and Schwartz,‘(j and by 
the present author, as well as the actually measured 
fabric strengths. The strength unit in Table 4 is N per 
yarn. In the table, the results by the present model 
represent the predictions using eqn (26). Note that 

(4 

0.08. 

0.06. 

(b) 

Fig. 7. The stress/strain curves of a plain weave fabric at Fig. 8. The geometry of interlacing points for various 
various levels of transverse tension a,. weaves: (a) 2/l twill; (b) 3/l twill; (c) 4/l satin. 
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Table 2. Fabrics and their parameters from Ref. 16 and t, 
values 

Property Fabric count, n,, Yarn size 
(thread/mm) (tex) (& 

mm) 

1. Cotton plain 
Warp 
Weft 

2. Cotton twill 
311 
Warp 
Weft 

3. Cotton satin 
411 
Warp 
Weft 

4. Polyester plain 

Warp 
Weft 

4.5 27 7.92 
1.7 42 9.88 

4.4 39 9.52 
2.1 35 9.01 

3.9 32 8.62 
2.0 39 9.52 

3.9 5 3.57 
2.5 20 7.13 

since the results are expressed as N per yarn, the fiber 
volume fraction of the fabric no longer plays a role in 
the calculation and should be set as unity. The 
uncorrected results in Table 4 were calculated based 
on the model of Daniels and the corrected results 
were based on a modified model of Smith and 
McCartney.29 

The data in Table 4 from Ref. 16 are the fabric 
strengths under uniaxial loading situation, i.e. when 
UT = 0. As we already learned that because of the 
contribution to the yarn-yarn normal compression 
force P from the longitudinal external force ur_ as 
shown in eqn (16) the frictional shear resistance 
zyl > 0 even when the transverse tension a, = 0. 
However, in the case of uniaxial loading, the 
contribution of uL towards zyl will be reduced because 
when the lateral tension UT is not present, the fabric 
is not as tight as a biaxial tensioning case, so that 
the effective normal compression force due to a, 
will be discounted by a factor A. It is difficult to 

Table 3. Yarn Weibull parameters for fabrics in Table 2 

Parameter P, q1, N (Y,,~, NmPy/rnrn 

1. Cotton plain 
Warp 10.08 5.35 2.99 x lo-” 
Weft 10.33 8.38 1.91 x lo-l2 

2. Cotton twill 3/l 
Warp 6.15 7.43 2.89 x 10m8 
Weft 8.75 7.19 2.09 x lo-” 

3. Cotton satin 4/l 
Warp 10.25 5.31 2.43 x lo-“’ 
Weft 9-88 6.57 5.49 x lo-l1 

4. Polyester plain 
Warp 19.02 1.77 1.26 x lo-’ 
Weft 10.64 5.65 6.54 x 10-l’ 

determine the value of A theoretically. An estimated 
value based on an empirical method can be obtained. 
For brevity, A = O-3 is selected for this study. Also, for 
non-plain weave fabric number 2 and 3 in the table, 
the corresponding P values from eqns (43)-(45) are 
used. 

To further verify our theory, we have selected 
another five fabrics with various fiber type, weave 
structures and Weibull strength parameters deter- 
mined similarly to Ref. 16 and listed in Table 5. The 
yarn thickness t,, and predictions of the fabric strength 
as well as its standard deviation are again calculated 
using the present theory. 

It is shown clearly in both Tables 4 and 5 that the 
present predictions of both fabric strength and its 
variation are in reasonable agreement with the tested 
results. In Table 4, our predictions are closer to the 
measured actual values than the predictions by 
Shahpurwala and Schwartz16 using either of their two 
models. Moreover, the general trend also shows that 
our predictions tend to exceed the measured strength 
values. We suspect that this may be due partly to the 
equal-load-sharing assumption adopted in the present 
analysis, and a less uniform load-sharing rule between 
the still surviving yarns will yield lower or more 
realistic results. 

Still, there are other potential factors which may 
influence our predictions. One of them is the 
aforementioned interconnection between the gauge 
length and the Weibull shape parameter pY of staple 
spun yarns revealed by Realff et a1.25 According to 
them, the failure mechanism of a yarn made of short 
fibers will change when the testing gauge length is 
below the fiber length, and at such a short gauge 
length, the yarn becomes unusually stronger, reflected 
by a reduced shape parameter & because more fibers 
break instead of being pulled out. If this principle is 
applicable here, the shape parameters determined at 
standard gauge length and employed in our model will 
underestimate the strengths of the fabrics made of 
short fiber yarns. However, from the data in both 
Tables 4 and 5, we do not see a noticeable trend of 
underestimation, nor do we see a clear distinction 
between the predictions for fabrics made of short fiber 
and continuous filament yarns. This may suggest that 
we cannot treat the critical yarn length in eqn (ll), by 
which our fabric strength predictions are calculated, as 
the equivalent gauge length in comparison to the 
actual testing gauge length on a tensile tester. This 
failure mechanism change observed on a strength 
tester may not dictate the yarn failure process in the 
fabrics used here. 

Additionally, it has been reported3” that for some 
materials, the Weibull law of eqn (1) may 
overestimate the strength for shorter gauge length 
while underestimating the strength for longer length. 
It again seems not the case for the present data in the 
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Table 4. Fabric strength and its SD value (in parentheses) tested and predicted (N/yam) 

Uncorrected Corrected Present model Tested 

1. Cotton plain 
Warp 
Weft 

2. Cotton twill 3/l 
Warp 
Weft 

3. Cotton satin 4/l 
Warp 
Weft 

4. Polyester plain 
Warp 
Weft 

3.86 (O-12) 
6.06 (0.29) 

4.70 (0.19) 
5.00 (0.24) 

3.84 (0.13) 
4.71 (0.21) 

1.43 (0.03) 
4.15 (0.17) 

3.93 (0.11) 
6.30 (0.26) 

4.82 (0.18) 
5.19 (0.22) 

3.92 (0.12) 
4.88 (0.19) 

1.46 (0.03) 
4.27 (0.15) 

6.12 (0.17) 
8.56 (0.39) 

9.14 (0.36) 
7.22 (0.34) 

4.97 (0.17) 
8.88 (0.45) 

7.10 (0.18) 
6.44 (0.36) 

5.09 (0.20) 
5.75 (0.21) 

1.78 (0.07) 
4.91 (0.34) 

5.72 (0.18) 
6.47 (0.29) 

l-80 (0.04) 
5.87 (0.21) 

two tables. So our results may in fact confirm the 
validity of using the Weibull function to specify the 
yarn strength. 

Another potential factor which may influence our 
prediction is the effect of fabric weave structures. Yet, 

by comparing fabrics of different structures in Tables 4 
and 5, we fail to see a pattern of error associated with 
the weave types. This seems to indicate that the 
pressure and weave type relationships developed in 
eqns (43)-(45) work reasonably well in our case. 

Table 5. Results for a new set of fabrics 

Fabric* 

1, 100% PET-F 2, 100% acetate-F 3, 100% acetate-F 4, 100% cotton-S 5, 100% cotton-S 
plain plain satin plain plain 

Thread count, ny (threads/mm) 
3.94 3.78 
3.94 2.21 

Yarn number (tex) 
3.28 3.89 
4.92 32.27 

Yarn thickness, t, (lo-’ mm) 
2.89 3.23 
3.54 9.33 

Yarn shape parameter, p, 
20.33 45.78 
31.53 14.50 

Yarn scale parameter, q, (NmBy/mm) 
7.29 x lo-l5 144 x lo-” 
2.63 x 10mzl 5.68 x 10-l’ 

Yarn strength (SD) (N/thread), tested 
3.79 (0.25) 1.42 (0.03) 
3.76 (0.13) 2.93 (0.24) 

Fabric strength (SD) (N/thread), tested 
4.40 (0.06) 2.09 (0.02) 
3.78 (0.12) 3.87 (0.13) 

Warp 
Weft 

Warp 
Weft 

Warp 
Weft 

Warp 
Weft 

Warp 
Weft 

Warp 
Weft 

Warp 
Weft 

Warp 
Weft 

4.41 2.68 2.68 
2.68 2.21 2.21 

3.99 39.63 36.91 
31.41 41.35 44.07 

3.28 9.60 9.26 
9.21 9.80 10.12 

12.75 11.54 14.57 
12.84 37.77 19.54 

1.24 x 1O-5 1.82 x lo-’ 5.42 x lo-” 
3.63 x 1O-9 4.11 x 1o-21 1.05 x lo-l3 

1.54 (0.15) 3.90 (0.57) 3.67 (0.41) 
2.92 (0.26) 3.03 (0.10) 3.50 (0.24) 

1.84 (0.03) 3-06 (0.19) 3.14 (0.14) 
4.04 (0.05) 2-84 (O-10) 3.64 (0.10) 

Fabric strength (SD) (N/thread), predicted 
3.92 (0.09) 1.46 (0.02) 1.69 (0.05) 3.88 (0.14) 3.69 
3.82 (0.07) (0.11) 

(0.11) 
3.18 3.17 (0.11) 2.99 (0.06) 3.59 (0.11) 

a F, filament yam; S, staple yarn. 
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5 CONCLUSIONS 

A new approach to calculate the critical yarn length 
for the fabric model as chain of yarn sub-bundle is 
proposed in this study. A woven fabric is shown to be 
enhanced by the yarn-yarn interactions occurring at 
the crossing points in a tensioned woven fabric. The 

yarn-yarn interactions are proven to consist of two 
forms; one is of adhesive nature and is independent of 

the pressure at the crossing point; and the other is 

frictional and is directly related to the normal pressure 

which can be generated from tensions applied to the 
fabric. Yet the adhesive force is proved to be 
generally negligible. The yarn-yarn interactions 

dictate the critical yarn length based on which the 
actual fabric strengths at uniaxial and biaxial 

extension cases can be calculated. The present 

predictions of the uniaxial loading case are shown in 
this study to be closer to the experimental results than 
those predicted by Shahpurwala and Schwartz.i6 The 

yarn cross-section and surface property, the yarn 
strength, fiber volume fractions of the fabric and the 

yarns, and the external loads exerted on the fabric are 

demonstrated to be the important variables determin- 
ing the fabric tensile strength. 

Additionally, a more realistic stress/strain relation- 
ship for a woven fabric has been obtained in the 

present work by including the effect of the 
between-yarn strength variation which leads to a 

gradual breakage of yarns in the fabric under external 
tension. 

It is also demonstrated in this study that the Weibull 
function is a good approximation to yarn tensile 

strength when used to predict fabric strength; and the 
yarn failure mechanism in a fabric during fabric 

extension is likely to be different from the yarn failure 
behavior observed on a strength tester using a 

correspondingly adjusted gauge length. 
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