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A Nonlinear Dynamic Model for Two-Strand Yarn Spinning
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Abstract

A nonlinear dynamic model is established for two-strand spun or Sirospun yarns. The
homotopy perturbation method proposed in our earlier work is used to calculated the
approximate oscillating periods in the vertical and horizontal directions. The study reveals
that the optimal convergence angle of the two strands in equilibrium is 90°, while when
the convergence angle is near 127°, resonance occurs.

Two-strand or Sirospun yarns [13] are produced on a
conventional ring frame by feeding two rovings, drafted
simultaneously, into the apron zone at a predetermined
separation. Emerging from the nip point of the front
rollers, the two strands are twisted together to form a
two-ply structure (see Figure 1), and the mechanical
character of such a two-strand yarn can be dramatically
improved over its parent yarns. Figure 1 illustrates a
model of two-strand yarn spinning.

In our previous paper, we established a quasistatic
model of two-strand yarn spinning to determine the con-
vergence point of the strands [3] and a linear dynamic
model for the problem [4]. In this paper we will establish
a nonlinear model for the problem.

Nonlinear Dynamic Model

Assume that the convergence point (equilibrium posi-
tion) leads to an instantaneous position (see Figure 2),
and the distances x and y are measured from the equi-
librium position. Thus, the motion equations in the x- and
y-directions can be expressed as

d*x
Mﬁﬂ- Ficosa — Fycos8=0 , (1)
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FIGURE 1. Two-strand yarn spinning.

2,
M%’;%—Flsincx%-f?zsinﬁ*FZO : (2)
Here M is the total mass of a fixed control volume ABCD
illustrated in Figure 3. The control volume is chosen in
such a way that the mass center locates on the conver-
gence point (O) of the two strands.

The mass M is determined from the following relation:

M =pilid pils & ph (3)

where [,, [, and p,, p, are, respectively, the length and
density per unit length of two parent strands above the
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FIGURE 2. Dynamic illustration of a two-strand spun yarn.
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FiGure 3. Control volume; the mass center locates at the
convergence point.

convergence point, h is the distance of the two-strand
yarn below the convergence point, which should be
chosen such that in the mass center, the control volume
ABCD locates at the convergence point, and p is the
density per unit length of the two-strand yarn.

Let the ends of the two strands above the convergence
point be fixed a distance 2L apart, and let the equilibrium
position be H. Thus, we have

Lishie R 2 1/1
S SRR el st 8 S S e
KL+ x). #{H £ f
(2 + HA2 — L(xL + yH) (I + BB 72
£ 14 [=3LAL2 + B2 + 3L + HY) 72 4
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+ [-HI? + B~ + 30H(L? + )y, 3)
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+[—L(L? + H)™7* + 3LHAL? + HP)™ (4)

sinB = H(L? + H5)™7* + LH(I? + 1Y)
+y (L2 + HQ)"J’/E _‘yHl(Ll + Hz)——f‘/:

£ 1% [*H(Ll i Hz)—f*,/z + 3L2H(L? + HZ)—5/2] o

+ 14 [=3H(? + )72 + 3B (L7 + HY) 2] P

LI+ B - 3L + Y Py L ()

cos B = L(L? + )2 — (12 + H)

+ xL*(I* +

/n

)2 — yLH(? + HY) ™7
+ 1 [=3L(L2 + HA) 72 + 332 + HY) ™ 72) 2
+ v [~L(L? + B~ 72 + 3LEP(L? + HB)™ 2]y

+[HI? + )72 = 3H@I + B 1xy . (6)

In this paper, we consider a symmetrical, simple case,
ie, a; = oy, F,'= F, = f, when the system is in
equilibrium. Integrating 36 into 1 and 2, we obtain

d*x 5 .
77 + wx+axy=0 |, (7
d’y i 2 A
gt ey tbrt ey’ =0 ®)
where
Wl = 2f [(L2 + H) ™2 — (12 + B~ 1m
(9
Wl = 2f [(L2 + H) ™2 — H(L* + B I
(10)
2 -2 2 2
a=2f[—H(L* + H) 3L
+ B M, (1)
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b=f[—HI* + B~ 72 + 32H(L?

+ B M, (12)

¢ = f[-3HI? + HY)~ 72 + 3HP(1

+HY M . (13)

There exist no small parameters in Equations 7 and 8§,
so the classical perturbation methods cannot be directly
applied. Recently some new perturbation technologies
have appeared that do not depend upon small parameters,
for examples, the homotopy perturbation method [3, 6,
7], the modified Lindstedt-Poincare methods [8, 9, 10],
the delta method [1, 2], and the energy balance method
[11]. Much literature also exists on asymptotic methods
[12], so our references to the literature will not be ex-
haustive. Rather, our purpose in this paper is to use the
homotopy perturbation method to search for analytical
solutions to Equations 7 and 8, which embody the es-
sential relationships needed by engineers who have to
design practical systems.

We construct a homotopy system in the following
form:

d*x ;

F—l— wx + paxy =10 (14)
d*y S
—= + wly + p(bx* + cy?) =0 (15)

dr?

It is obvious that when p = 0, the system of Equations 14
and 15 becomes the linearized one in reference 4, and
when p = 1, it turns out to be the original system of
Equations 7 and 8. The embedding parameter p mono-
tonically increases from zero to a unit as the linear
system (p = 0) is continuously deformed to the original
system of Equations 7 and 8. So if we can construct an
iteration formula for the system of Equations 14 and 15,
a series of approximations appears as a solution by
incrementing the imbedding parameter from zero to one;
this continuously maps the initial solution of 14 and 15
into the solution of the original system of Equations 7
and 8.

According to the homotopy perturbation method [3, 6,
7], the solutions can be expressed in the following form:

x=xotpn+p+ ... (16)

y=yotpyt+tpy+... (17)

Substituting 16 and 17 into 14 and 15, and collecting
terms of the same power of p, we obtain the following
differential equations for x,, x, and y,, y;:
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@iy .
7T e =0 (18)
d*x, 7 .
e ot xy=0 , (19)
d’yq 5
e + ayy =0 (20)
dZY! 2 a
—= 4+ iy +axi+ byl =0 (21)
dt !
The solutions of 18 and 20 are, respectively,
Xo = A sin wef (22)
Yo= Bsinaw,t , (23)

where A and B are amplitudes in the x- and y-direc-
tions, respectively. Using the initial conditions for x, and
yi—x,(0) = x3(0) = 0, and y,(0) = y; (0) = O—we can
easily obtain the solutions for x, and y,. If the first-order
approximates are enough, we place p = 1in 16 and 17 to
yield the following approximate solutions:

AB
2 — (@, — w,))

AB
2(w; — (0, + 0,)")

X =xy+x,=Asinwt—

[cos(w, — w,)t — cos w, 1] +

X [cos(w, + o, )t —cos w.t] , (24

1
y = Yo+ ¥, = Bsinw,t — 5— (aA® + bB?)

2w

A= cosag) — (cos 2w,1 — cos w,1)

a
2040l — )

bB’
e (cos 2w,t — cos w,1)

v

(25)

If 20, = w, (i.e., L = 2H or oy = 26.56°), resonance
occurs. This phenomenon should be completely avoided
in textile applications.

Conclusions

We suggest a nonlinear dynamic model for two-strand
spun yarns, which can be used directly by the textile
industry. Our study reveals that the optimal convergence
angle of the two strands in equilibrium is 90°, while
when the convergence angle is nearly 127°, resonance
occurs,
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