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Abstract 

Ultra-fine polymer fibers, obtained by electrospinning, have a wide range of potential applications such 
as fluid filtration, biomedicine, catalyst supports, drug delivery, tissue engineering, nanowires, to just say 
few. Yet theoretical modeling the spinning process remains a bottleneck severely hampering further 
improvement in both quality and efficiency. This paper establishes a mathematical model to explore the 
physics behind electrospinning. When electrical force is dominant over the other forces, Bratu equation is 
derived, which can explain the instability (bifurcation) in electrospinning. A variational model is also 
established.  
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1. Introduction  

Structured polymer fibers with diameters in 
the range from several micrometers down to tens 
of nanometers are of considerable interest for 
various kinds of applications. It is now possible 
to produce a low cost, high-value, high-strength 
fiber from a biodegradable and renewable waste 
product for easing the environmental concerns. 
For instance, pore structured electrospun 
nanofibrous membrane as wound dressing [1] 
can exudates fluid from the wound so as to 
prevent either building up under the covering, or 
wound desiccation. The electrospun nanofibrous 
membrane shows controlled liquid evaporation, 
excellent oxygen permeability, and promoted 
fluid drainage capacity, meanwhile still can 
inhibit exogenous microorganism invasion 
because its ultra-fine pores. Other examples 
include thin fibers for filtration application [2,3], 
bone tissue engineering [4], drug delivery [5], 
catalyst supports[6], fiber mats serving as 
reinforcing component in composite systems[7], 
fiber templates for the preparation of functional 
nanotubes [8].  

Electrospinning is a method of producing 
superfine fibers with diameters ranging from 

10 mµ down to 10 nm by forcing a molten 
polymer or a polymer solution through a 
spinneret by an electric field. Under the 
influence of the electrostatic field, a pendant 
droplet of the polymer solution at the capillary 
tip is deformed into a conical shape (Taylor 
cone)[9]. If the voltage surpasses a threshold 
value, electrostatic forces overcome the surface 
tension, and a charged fine jet is ejected. The jet 
moves towards a ground plate acting as a 
counter electrode. The controlling parameters of 
the process are hydrostatic pressure in the 
capillary tube and external electric field. 
Viscosity, conductivity, dielectric permeability, 
surface tension, and temperature gradient affect 
the process as well.  The electrospinning 
process, invented by Formhals [10] in 1934, was 
studied in detail by many researchers [11~23], 
but almost all models in open literature do not 
take thermal effect into account.  For a polymer 
with high molten temperature, thermal factor is 
critical for the process. So a rigorous 
thermo-electro- hydrodynamics description of 
electrospinning is needed for better 
understanding of the process.  
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2. Governing Equations of thermo- 
electro-hydrodynamics   

Spivak et al.[16,17] established a model of 
steady state jet in the electrospinning process 
(see notations in section 3): 

1) Equation of mass balance gives 
0=⋅∇ u .              (1) 

2) Linear momentum balance is 
em TT ∇+∇=∇⋅ uu )(ρ .       (2)   

3) Electric charge balance reads 
0=⋅∇ J .             (3) 

The right hand side of Eq.(2) is the sum of 
viscous and electric forces. 

   This is a simple model without 
considering thermal effect. In this paper, we 
consider the couple effects of thermal, electricity, 
and hydrodynamics. A complete set of balance 
laws governing the general thermo-electro- 
hydrodynamics flows has been derived by and 
Ko & Dulikravich[24] and Eringen & Maugin 
[25,26]. It consists of modified Maxwell’s 
equations governing electrical field in a moving 
fluid, the modified Navier-Stokes equations 
governing heat and fluid flow under the 
influence of electric field, and constitutive 
equations describing behavior of the fluid (see 
notations in section 3): 

0=⋅∇+
∂
∂ J

t
qe ,            (4) 

PEEftu
⋅∇+++⋅∇= )(eq

Dt
D ρρ ,   (5) 

Dt
DQ

Dt
DTc hp

PEΕJq ⋅+⋅+⋅∇+=ρ .  (6) 

  This set of conservation laws can constitute a 
closed system when it is supplemented by 
appropriate constitutive equations for the field 
variables such as polarization.  The most 
general theory of constitutive equations 
determining the polarization, electric conduction 
current, heat flux, and Cauchy stress tensor has 
been developed by Eringen and Maugin [25,26].  

EP pε= ,                 (7) 
Tk T∇++= σσuEJ ,        (8) 

Eq ET κκ +∇= ,           (9) 

])([~ tp vvIt ∇+∇+−= η .       (10) 
Here, coefficients 

ε p , µm, k,σ, σT , κ, κE ,  η  are material 
properties and depend only on temperature in the 
case of an incompressible fluid.  For the 
physical importance of these properties, see 
review papers by Ko and Dulikravich [24]. 
Eq.(10) is valid only for Newtonian flows.   
 
3. Mathematical Model for One- 

Dimensional Case 
 
An unsteady flow of an infinite viscous jet 
pulled from a capillary orifice and accelerated 
by a constant external electric field is considered 
in this section.  
 
1) The conservation of mass equation gives 

0)()( 22 =
∂
∂

+ ur
z

r
t∂
∂ ,         (11)             

where r is the radius of the jet at axial coordinate 
z , and u is the axial velocity.  
2) Conservation of charge reduces into 
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where σ  is the surface charge density, E the 
electric field in the  axial direction. The 
current is composed of three parts: (1)The 
Ohmic bulk conduction current: =cJ kEr2π ; 
(2) Surface convection current: urJs σπ2= ; 
and (3) Current caused by temperature gradient:  

zTrJ TT ∂∂= /2σπ .  
3) The Navier-Stokes equations becomes 
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where p is the internal pressure of the fluid 
expressed as   
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−
−= Ep ,     (15) 

where κ  is twice the mean curvature of the 
interface 21 /1/1 RR +=κ , where 1R  and 2R  
are the principal radii of curvature. ε  is the 
fluid dielectric constant, ε  air dielectric 
constant.  

Rheologic behavior of many polymer fluids 
can be described by power-law constitutive 
equation in the form:  

∑
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z
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12
0 )(µτ .   (16) 

In addition to conducting bodies, there are 
also dielectrics. In dielectrics the charges are not 
completely free to move, but the positive and 
negative charges that compose the body may be 
displaced in relation to one another when a field 
is applied. The body is said to be polarized. The 
polarization is given in terms of a dipole 
moment per unit volume P, called the 
polarization vector. The bound charge or 
polarization charge in the dielectric is given by  

P⋅−∇=ρq .            (17) 
In an isotropic linear dielectric case the 

polarization is assumed to be proportional to the 
field that causes it, thus  

EP pε= ,             (18) 

where pε  is the electric susceptibility.  
 
4. Bratu equation and bifurcation in the 

process   
 

In this section we consider the steady state 
jet ignoring the thermal effort. In case 
electrically generated force is dominant, the 
momentum equation becomes    

r
E

z
uu

ρ
σ2

=
∂
∂ .             (19) 

From the charge balance equation:  
,2 2 IkErur =+σ  

Eq.(19) can be expressed in the form 

ur
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Introducing a new variable, v, defined as  
6/veu −= .              (21) 

Substituting (21) into (20) results in 
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Differentiating (22) with respect to z , and 
assuming 0/ ≈∂∂ zr , yields 
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In view of (22), Eq.(23) becomes the 
well-known Bratu equation[27] 

02

2
=+

∂
∂ ve
z
v λ ,          (24) 

where 42222 /)(18 rkErIE ρλ −= . Eq.(24) 
comes originally from a simplification of the 
solid fuel ignition model in thermal combustion 
theory [28]. There are two solutions to Eq.(24) 
for values cλλ <<0 , and no solutions for 

cλλ > . In case cλλ =  there is only one 
solution. 
  By the semi-inverse method [30, 31, 32], we 
can easily obtain various variational principles 
for electrospinning. 

 
5. Conclusion  
 

We establish general model for the discussed 
problem, when electric force is in a dominant 
position, the model turns out to be of Bratu 
equation; this leads to quite simplification when 
we study the bifurcation or instability of the 
process. We will give detailed theoretical results 
and experimental verification in forthcoming 
papers.  
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