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Abstract

Governing equations for one-dimensional ionic polymer–metal composites are reviewed and then cast into the framework of a variational

statement. Starting from a trial-Lagrangian, a generalized functional is derived through a systematic procedure of the semi-inverse method

proposed by Ji-Huan He. All field equations and boundary conditions are cast into Euler equations of the obtained functional, leading to much

convenience in incorporating analytical and numerical approaches.
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1. Introduction

The growing interest of engineers in ionomeric poly-

mer – metal composites (IPMC) has arisen from the

promising perspectives and possibilities provoking drastic

phase transitions by inducing small changes in external

conditions [1]. For technical applications, electrical actua-

tors made of IPMC can be utilized in various areas. When

voltage is applied, the resulting electrostatic forces com-

press a film in thickness and expand it in area. Additionally,

IPMC is of particular interest because of low cost of

materials and flexibility of polymers to be tailored to

particular applications. Therefore, the mathematical models

for IPMC have played and continue to play an important

role in enhancing our understanding of actuation mechan-

ism. Partial differential models have been used extensively

to study the behaviors, but no variational model, as far as the

authors know, exists in open literature. One advantage of

variational model is that it provides us with various

approximate analytical and numerical approaches to

dynamics simulation.

The rapid development of computer science and the finite

element applications reveals the importance of searching for

a classical variational principle for the discussed problem,

which is the theoretical basis of the finite element methods

[2]. Furthermore, such variational formulations have served

as a basis for development of variety of approximate

methods of analysis. The recent research reveals that

variational theory is also a powerful tool for meshless

method or element-free method [3].

However, IPMC has not been frequently viewed from a

variational point of view. In this paper we will apply the

semi-inverse method [4] to establish a variational model for

the entitled problem, whose stationary conditions satisfy all

the field equations and boundary conditions. An advantage

of the semi-inverse method is that it can provide a powerful

mathematical tool to the search for variational formulations

for a rather wide class of physic problems without using the

well-known Lagrange multipliers, which can result in

variational crisis (the constrains can not eliminated after

the identification of the multiplier or the multipliers become

zero) [5], furthermore, to use the Lagrange multipliers, we

must have a known variational principle at hand, a situation

which not always occurs in continuum physics.

0032-3861/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.polymer.2003.10.043

Polymer 44 (2003) 8195–8199

www.elsevier.com/locate/polymer

* Corresponding author. Address: Center of Physics of Fibrous Materials,

College of Science, Donghua University, P.O. Box 471, 1882 Yan’an Xilu

Road, Shanghai 200051, People’s Republic of China. Tel.: þ86-216-237-

9917; fax: þ86-216-237-3137.

E-mail address: jhhe@dhu.edu.cn (J.H. He).

http://www.elsevier.com/locate/polymer


2. Governing equation

The dynamics of ionic polymer gels in an electric field

are investigated by many authors. Details can be found in a

recently published book [1], ample references can be found

there. Hereby we use an electromechanical model for ionic

polymer metal composites proposed by Nemat-Nasser et al.

[6].

For better illustration of the basic procedure of searching

for a variational model for the discussed problem, making

the underlying idea clear and not darkened by the

unnecessarily complicated form of mathematical

expressions, we consider here only a simple example:

one-dimensional case. The governing equations read [1,6]

›D

›x
¼ r; ð1Þ

D ¼ keE; ð2Þ

E ¼ 2
›w

›x
; ð3Þ

›Cþ

›t
þ

›J

›x
¼ 0: ð4Þ

Here, D; E; w; respectively, denote the electric displace-

ment, the electric field, and the electric potential. r is the

charge density defined by r ¼ FðCþ 2 C2Þ; Cþ and C2 are

the positive and negative ion densities, respectively, F is

Faraday’s constant, ke is the effective electric permittivity of

the polymer. J denotes ion flux vector given by

J ¼ 2Dþ ›Cþ

›x
2

CþF

RT
E þ

CþVþw

RT

›p

›x

" #
þ Cþv: ð5Þ

Here v is water flow velocity, defined by Darcy’s law

v ¼ Dh C2FE 2
›p

›x

� �
: ð6Þ

In these two equations, Dþ and Dh are the ionic diffusivity

and hydraulic permeability coefficients, respectively; R is

the gas constant, T is the absolute temperature, p is the fluid

pressure, and

Vþw ¼ MþðVþ
=Mþ 2 Vw

=MwÞ;

in which Vþ and Vw are partial molar volumes of the cation

and water, respectively, and Mþ and Mw are the

corresponding molar weights.

Boundary conditions

At x ¼ x0 we prescribe D ¼ �D0; ð›p=›xÞ ¼ �px0; and v ¼

�v0; and at x ¼ x1; we give D ¼ �D1; ð›p=›xÞ ¼ �px1; and v ¼

�v1:

Though the above one-dimensional problem can with

some algebraic difficulty be solved using Fourier series, it

becomes an extraordinary tedious work if not possible to

obtain a closed-form expression for full three-dimensional

problems and even non-linear ones by Fourier series.

Variational theory provides us with both analytical (e.g.

Ritz method) and numerical (e.g. finite element method)

approaches with ease. This paper is a preliminary report in

the spirit of applied mechanics (the calculus of variations)

applied to a problem in polymer science. In order to allow

the readers to follow the basic idea of variational approach,

an illustrating example is given in the appendix.

Some of above equations will be rewritten in general

forms which are easy to be cast in the framework of some

variational statements by the semi-inverse method [4].

Eq. (6) is written in the form

E ¼
1

DhC2F
v þ Dh

›p

›x

� �
: ð7Þ

Substituting Eq. (5) into Eq. (4), we have

›Cþ

›t
2 Dþ ›2Cþ

›x2
þ

CþDþF

RT

›E

›x
2

CþDþVþw

RT

›2p

›x2

þCþ ›v

›x
¼ 0: ð8Þ

Further applying the relation, Eq. (7), the above equation

can be cast into a more general form:

›Cþ

›t
2 Dþ ›2Cþ

›x2
þ a

CþDþF

RT

›E

›x

þ b
CþDþ

C2RT
2

CþDþVþw

RT

 !
›2p

›x2

þ Cþ þ b
CþDþ

DhC2RT

 !
›v

›x
¼ 0; ð9Þ

where a and b are constants, and meet the identity a þ b ¼

1:

Eq. (2) can also be written in the following general form

D ¼ akeE þ bkeE ¼ akeE þ
bke

DhC2F
v þ Dh

›p

›x

� �
; ð10Þ

where a and b are constants with relation aþ b ¼ 1:

3. Variational model

The essence of the proposed method is to construct an

energy-like functional with a certain unknown function,

which can be identified step by step. An energy-like trial-

functional with five kinds of independent variations (D; E;

w; p and v) can be constructed as follows

PðD;E;w; p; vÞ ¼
ðx1

x0

L dx þ BI; ð11Þ

where L is a trial-Lagrangian and BI is the boundary items.

There exist many approaches to the construction of trial-

Lagrangian, illustrating examples can be found in the

author’s previous publications [7,8].
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We begin with the following trial-Lagrangian:

L ¼ 2D
›w

›x
2 rwþ FðD;E; p; vÞ; ð12Þ

where F is an unknown function to be further determined,

and it is free from the variable w:

It is easy to see that the stationary condition with respect

to w is Eq. (1). Now the stationary condition with respect to

D reads

2
›w

›x
þ

dF

dD
¼ 0; ð13Þ

where dF=dD is the variational derivative, which is defined

as

dF

dD
¼

›F

›D
2

›

›x

›F

›Dx

� �
; Dx ¼

›D

›x
:

We search for such an F that the above trial-Euler equation

(13) satisfies one of field equations, saying, Eq. (3).

Accordingly, we can identify the unknown F in the form

F ¼ 2DE þ F1: ð14Þ

The Lagrangian, Eq. (12), therefore, can be renewed as

follows

L ¼ 2D
›w

›x
2 rw2 DE þ F1; ð15Þ

where F1 is a newly introduced unknown function with less

variables. It is an unknown function of E; p; v and/or their

derivatives.

By the same operation, the Euler equation for dE reads

2D þ
dF1

dE
¼ 0: ð16Þ

If we set

dF1

dE
¼ akeE þ

bke

DhC2F
v þ Dh

›p

›x

� �
; ð17Þ

then the above trial-Euler equation (16) turns out to be the

field Eq. (10). From the above relation, we can easily

identify F1 in the form

F1 ¼
1

2
akeE2 þ

bke

DhC2F
v þ Dh

›p

›x

� �
E þ F2; ð18Þ

where F2 is an unknown function of p and v:

The trial-Lagrangian can be further updated as

L ¼ 2D
›w

›x
2 rw2 DE þ

1

2
akeE2 þ

bke

DhC2F

� v þ Dh

›p

›x

� �
E þ F2: ð19Þ

Now the trial-Euler equation for dp reads

2
bke

C2F

›E

›x
þ

dF2

dp
¼ 0: ð20Þ

Comparing Eq. (20) with Eq. (9), we set

bke

C2F
¼ a

CþDþF

RT
: ð21Þ

Therefore, we have

dF2

dp
¼

bke

C2F

›E

›x
¼ a

CþDþF

RT

›E

›x

¼ 2
›Cþ

›t
þ Dþ ›2Cþ

›x2

2 b
CþDþ

C2RT
2

CþDþVþw

RT

 !
›2p

›x2

2 Cþ þ b
CþDþ

DhC2RT

 !
›v

›x
; ð22Þ

from which we determine F2 in the form

F2 ¼ 2
›Cþ

›t
p þ Dþ ›2Cþ

›x2
p þ

1

2

� b
CþDþ

C2RT
2

CþDþVþw

RT

 !

�
›p

›x

� �2

þ Cþ þ b
CþDþ

DhC2RT

 !
v
›p

›x
þ F3: ð23Þ

We update the Lagrangian in the form

L ¼ 2D
›w

›x
2 rw2 DE þ

1

2
akeE2 þ

bke

DhC2F

� v þ Dh

›p

›x

� �
E 2

›Cþ

›t
p þ Dþ ›2Cþ

›x2
p þ

1

2

� b
CþDþ

C2RT
2

CþDþVþw

RT

 !

�
›p

›x

� �2

þ Cþ þ b
CþDþ

DhC2RT

 !
v
›p

›x
þ F3: ð24Þ

Here F3 is an unknown function of v: We obtain the

following stationary condition with respect to v :

bke

DhC2F
E þ Cþ þ b

CþDþ

DhC2RT

 !
›p

›x
þ

dF3

dv
¼ 0: ð25Þ

This equation should be Eq. (6). We, therefore, set

bke

DhC2F
¼ kDhC2F; ð26Þ

and

Cþ þ b
CþDþ

DhC2RT
¼ 2kDh; ð27Þ
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where k is a non-zero constant. Accordingly, we have

dF3

dv
¼ 2kDh C2FE 2

›p

›x

� �
¼ 2kv; ð28Þ

which leads to the result

F3 ¼ 2
1

2
kv2

: ð29Þ

The following finial Lagrangian is obtained

L ¼ 2D
›w

›x
2 rw2 DE þ

1

2
akeE2 þ

bke

DhC2F

� v þ Dh

›p

›x

� �
E 2

›Cþ

›t
p þ Dþ ›2Cþ

›x2
p þ

1

2

� b
CþDþ

C2RT
2

CþDþVþw

RT

 !

�
›p

›x

� �2

þ Cþ þ b
CþDþ

DhC2RT

 !
v
›p

›x
2

1

2
kv2

: ð30Þ

The constants a; b; a; b and k are determined from the

relations a þ b ¼ 1; aþ b ¼ 1; Eqs. (21), (26) and (27),

leading to the results

b ¼ 2
F2 2 C2CþðC2DhRTF þ DþÞ

keRTðF2 2 1Þ
; a ¼ 1 2 b;

k ¼
ke

ðDhC2FÞ2
b; a ¼ 2

F22C2CþðC2DhRTFþ DþÞ

C2CþDþF2ðF2 2 1Þ
;

b ¼ 1 2 a:

By incorporating boundary conditions, we finally obtained

the following variational principle:

PðD;E;w; p; vÞ ¼
ðx1

x0

L dx þ �D0wlx¼x0
2 �D1wlx¼x1

2�px0

 
b

CþDþ

C2RT
2

CþDþVþw

RT

!
p







x¼x0

þ�px1

 
b

CþDþ

C2RT
2

CþDþVþw

RT

!
p







x¼x1

2�v0

 
Cþ þ b

CþDþ

DhC2RT

!
p







x¼x0

þ�v1

 
Cþ þ b

CþDþ

DhC2RT

!
p







x¼x1

; ð31Þ

where L is defined by Eq. (30).

4. Conclusions

We obtain, by the semi-inverse method, a variational

formulation for ionic polymer–metal composites in terms of

electric displacement, electric field, electric potential,

pressure, and water flow velocity. The stationary conditions

of the obtained functional satisfy all field equations and

boundary conditions. The variational model is the basis for

numerical approximation techniques. The result can be

readily expanded to three-dimensional case, and it is also

easy to take the thermal effect into consideration. From the

obtained generalized variational principle, Eq. (31), various

constrained variational functionals can be obtained by a

systematic procedure of relaxing some admissibility

conditions and imposing others [9].

Appendix A

We consider a differential equation in the form:

d2y

dx2
þ y þ x ¼ 0; yð0Þ ¼ yð1Þ ¼ 0: ðA1Þ

The equation is simple, and it is easy to obtain the exact

solution:

yex ¼
sin x

sin 1
2 x: ðA2Þ

By the semi-inverse method, we obtain the following

functional

JðyÞ ¼
ð1

0

1

2

dy

dx

� �2

2
1

2
y2

2 xy

( )
dx: ðA3Þ

Minimizing the above functional results in the following

stationary condition called Euler equation:

›L

›y
2

d

dx

›L

›y0
¼ 0; ðA4Þ

where y0 ¼ dy=dx and L ¼ ð1=2Þðdy=dxÞ2 2 ð1=2Þy2 2 xy:

Substituting the results in Eq. (A4), we obtain

2y 2 x 2
d

dx

dy

dx

� �
¼ 0; ðA5Þ

which is equivalent to Eq. (A1).

Now we apply the Ritz method to obtain an explicit

analytical solution from Eq. (A3). The basic character of

Ritz method is choose a trial-function satisfying the

boundary conditions. We choose a simplest one in the form

y ¼ cxð1 2 xÞ; ðA6Þ

where c is an unknown constant to be further determined. It

is obvious that Eq. (A6) satisfies the boundary conditions

yð0Þ ¼ yð1Þ ¼ 0:

Substituting Eq. (A6) into Eq. (A3), and integrating the
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result, we obtain a function of c:

JðcÞ ¼
ð1

0

1

2
c2ð122xÞ2 2

1

2
c2x2ð12xÞ2 2cx2ð12xÞ


 �
dx

¼
3

20
c2 2

1

12
c: (A7)

Minimizing Eq. (A7) to identify the constant c :

3

10
c 2

1

12
¼ 0: ðA8Þ

So we obtain the following approximate solution:

yapp ¼
5

18
xð1 2 xÞ: ðA9Þ

To illustrate its accuracy, we calculate the value at x ¼ 0:5:

The exact value is yexð0:5Þ ¼ 0:06974; while the approxi-

mate one reads yappð0:5Þ ¼ 0:069444: The 0.42% accuracy

is remarkable good in view of the crude and simple trial-

function.
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