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ABSTRACT

The mechanics of the failure process and ultimate strength of a twisted yamn structure
are studied using a newly proposed stochastic model of the failure process. The impor-
tance of the twist reinforcing mechanism to the strength of a twisted structure with
continuous components, the interaction patterns between different component types dur-
ing yarn extension, and the significance of multiple breaks along a component are
demonstrated. Building on the three basic concepts of fragmentation and chain-of-sub-
bundles, changing lateral constraint between components due to twist and its effect on
component strength, and load sharing between broken and still surviving members during
yarn breakage, a new mechanistic approach is proposed and a stochastic computer model
is developed to predict the behavior of blended yamns. The approach is similar to that
developed earlier by Boyce et al. [3] to study the failure process in woven fabrics. The
model acts to predict the strength and fracture behavior of a blended yarn with continuous
components. The predicted results are illustrated in comparison with the experiments of
Monego et al. {20, 21, 22]. By means of this new model, fundamental features of blended
yarn behavior are simulated and elucidated, including the strength reinforcing mechanism
of twist in a blended yarn, the yarn break propagation pattern, and the effect of twist on
yam fracture behavior as well as the shape effect of component stress-strain curves.
Moreover, the relationship between the strength of a structure and that of its components

is also investigated.

Fiber blending has traditionally been considered an
effective means for improving or reinforcing mechanical
as well as other properties of yarns. The study of blended
continuous-filament structures has attracted the attention
of many researchers [2, 15, 19, 20, 21, 22, 23]. The
purpose of such study is to understand the role of various
phenomena contributing to the mechanical behavior of
the blend, including the reinforcing mechanism of fiber
blending, the interactions of the different constituent
fibers in a hybrid twisted structure under external load as
well as the effect of lateral pressure on fiber interaction,
the relation and mechanism between yamn strength and
blend ratio, and the effect of twist level on the fracture
behavior of blended yarn. Ultimately, results from these
studies will provide theoretical foundations for predict-
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ing the ultimate strength and fracture behavior of
blended filament yarns. This is significantly important to
textile science, and could potentially help fiber producers
and textile firms guide fiber processing and optimize
textile blending and spinning techniques.

Many investigators have focused on filament yarns,
not only because the filament structure has considerable
significance for certain industrial applications, but be-
cause the study of continuous filament yarns is also
mathematically more manageable compared with staple
yarns, and will certainly provide a basis for further
development of the theory for staple yarns.

Research on the strength and fracture behavior of
blended filament yarns involves the investigation of fric-
tional interactions of fibers (filaments), fiber flaw distri-
bution and its effect on yarn strength, fiber in site me-
chanical properties, and stress transfer from a broken
fiber into still surviving fibers during yarn extension.
Some of these issues are also of interest to researchers in
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fiber composite materials, and some are fundamental to
materials science in general.

To understand and predict the strength of filament
yarns accurately, another major parameter has to be
considered, that is, the effect of transverse pressure on
the individual fibers due to tensioning of the yarn. The
importance of lateral pressure on load transfer from fiber
to fiber in a twisted fibrous structure was recognized as
far back as Galileo [6], and several researchers in yarn
mechanics have incorporated the effect of the transverse
force into their analytic models. For example, Gurney [9]
developed a relationship between yarn strength, twist
level, lateral contraction ratio, and fiber stress-strain
properties. Sullivan [35] determined the strength of sta-
ple fiber yarns by analyzing the lateral pressure distribu-
tion ‘across the yarn and its contribution to axial stress.
Machida [19] analyzed the lateral pressure in blended
filament yarns under tension as a means of predicting the
recovery fiber length during yarn rupture. Grosberg et al.
[8] calculated lateral pressure distribution in a low-twist
sliver under extension so as to predict sliver strength.
Dogu [4] derived the distribution of transverse pressure
in a twisted yamn, including fiber migration and fiber
packing density variation. Hearle et al. [11], Kilbey [16],
and White et al. [37] provided a comprehensive analysis
of filament yarn strength, taking into account transverse
forces and leading to a more complete understanding of
the relationship betwezn filament and yarn properties.

Meanwhile, in view of the stochastic nature of mate-
rial strength, statistical approaches have been applied as
well. Phoenix [25, 26, 27] proposed the concept of the
chain-of-bundles model of yarn strength to tackle the
issue of the statistical nature of strengths of individual
filaments and yarns, the size (length) effect on filament
strength, and the load sharing mechanism during yarn
breakage. Boyce et al. [3] extended this kind of chain-
of-bundles model to include interactions of model ele-
ments (yarns) to predict failure in woven fabrics.

Despite all these studies, a number of questions about
filament yarn strength and fracture behavior remain un-
answered. The salience of these problems, as summa-
rized below, is often revealed in industrial practice.

According to existing analyses, the initial singles yarn
fupture should always take place at the center where the
filament strain is the greatest. While this occurs in certain
yarns, it is by no means universal, as shown in experi-
mental work [19, 21].

Most earlier models assumed that once a filament in a
yarn breaks, it ceases to contribute to yarn strength.
However, the presence of multiple breaks along a single
filament in a tensioned yarn observed experimentally
[19, 21] and termed the “fragmentation phenomenon” in
the composites area, illustrates the invalidity of such an
assumption and suggests that a broken filament is still
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subjected to the. full level of yarn strain at positions
removed from the broken end, due to interfiber friction
acting to transmit load.

The strength of materials is already proven to be
statistically related to material dimensions as well as the
structures in which they function (18, 24, 32, 34]. In the
case of tensioned yarns, the effective length on which the
strength of a filament should be determined is proven to
be different from its original length, as illustrated in the
next section. Moreover, the filament itself is under a
complex stress state when tensioned, and a changing
lateral pressure is exerted on it. These factors inevitably
alter the apparent strength of the filament and suggest the
invalidity of using filament properties tested in conven-
tional conditions, isolated from the yarn, to build a
theoretical model.

Furthermore, researchers [27] in the area of fiber and
yarn mechanics have long been intrigued by the fact that
stronger fibers do not necessarily lead to a stronger yamn.
They have suggested some models that try to explain the
cause of this lack of oorrelatlon between fiber and yarn
strength. :

Therefore a more realistic blended filament yamn
model is desirable, and as an attempt in this direction, we
have developed an alternative model in this paper. The
model addresses the prediction of load-extension behav-
jor, strength, and fracture behavior in blended filament
yarns, as well as ropes and other similar twisted flexible
structures, based on fiber properties, blend ratio, yarn
structural parameters, and yarn twist level.

Experimental Evidence

To illustrate our model clearly, we present an early
study on this issue in detail here. The importance of this
prior work is that it delivers informative and elaborate

experimental evidence obtained under conditions close -

to ideal, and hence reveals a few fundamental points that
have not yet been incorporated in the existing yarn anal-
ysis. Also, unprecedentedly the whole experimental
work is so thorough that it provides a very valuable base
to verify theoretical predictions.

In an experimental investigation, Monego et al. [20,
21, 22] studied the rupture mechanisms in continuous
twisted structures of blended fiber types using mechan-
ical tracer elements. To facilitate experimental control
and observation, they made a set of gross-model yarns in
lieu of conventional structures, The gross-model yarns
each consisted of 91 components, either cotton yarns or
polyester (termed PET or Dacron below) filament yarns,
drawn from independent packages in a creel and twisted
carefully with negligible radial migration in five helical
layers about a central or core yarn. In all, 91 different
colors were used for different samples of the cotton yarn
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to permit identification of each cotton component with
respect to its radial position in the gross model. They
prepared a range of such model structures that varied
from 0% to 100% cotton (100% to 0% polyester) with
twist ranging from about 0.50 to 4.50 twist multiplier.

In these model yarns (or more accurately, strands
consisting of individual yarns or components), the poly-
ester components were yarns of 70 denier formed by 34
filaments. The cotton yarns were 67 denier. For brevity,
however, in our study we will refer to the model strand
as a blended yarn and its constituent yarns as compo-
nents.

Successive specimens of these model strands were
tension tested to different strain levels. After each spec-
imen was strained to its designated level, it was removed
from the instrument, then carefully untwisted and exam-
ined for the presence of tensile breaks in the component
yamns. A fairly simple approach was used to record the
location and frequency of component breaks at each
extension level for each gross-model. A series of parallel
lines drawn in groups corresponded to one-half the num-
ber of components in each ring of the model cross
section. Each group was then arranged symmetrically
about the center line or axis of the model. The lines were
numbered arbitrarily from right to left, as shown in
Figure 1. Thus, each numbered line corresponded to a
numbered position in the cross section of the model in
Figure 2. The unmarked locations represent polyester
yarn positions for the given specimen. A few testing
results are provided here as a basis for further discussion.

Figure 2 shows data taken in tests of a 2-cotton/89-
polyester component model, with the cotton located at
positions 8 and 52 as shown, and a twist multiplier of
2.19. After extension of the model yarn to the 11% strain
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level, component 52, located in the second ring from the
core, evidenced five breaks in its 20.32 cm gauge length,
while component 8 in the fifth or outer ring showed no
breaks, as seen in Figure 1a. When another specimen of
the same model was extended to 15%, it evidenced 19
breaks in component 52 and fewer breaks in 8, as shown
in Figure 1b. Figure lc, representing the effect of 25%
extension, shows the presence of 44 breaks in component
52 and 13 in component 8.

As mechanical tracers, components 52 and 8 clearly
illustrate the dependence of multiple break frequency on
location, hence on local strain level and on local pres-
sure. Similar conclusions can be derived from Figures 3
and 4, showing a 4.37 twist multiplier model with 10
cotton and 81 polyester components. '

In contrast, an entirely different fracture behavior can
be observed by using a 3.26 twist multiplier model of 39
cotton components. Rupture initiation of a few inner
cotton components is followed by rapid and concentrated
propagation of the break to most of the cotton yarns in
that region. At this point, the load shed so precipitously
by the cotton exceeds the additional load bearing capac-
ity of the polyester, and the entire model fails in a
manner characteristic of a 100% cotton model. The re-
maining elongation of the polyester is not realized, as
shown in Figure 5. The concentration of the break prop-
agation is seen in Figures 6a, b and c for extension steps
of 11%, 12%, and 13%, respectively.

Finally, Figure 7 shows that twist strongly influences
load transfer and rupture propagation. Here, all yarns
have the same blend ratio of 56% cotton/44% polyester,
and the twist levels vary from 0.54 to 4.34 twist multiple.
Twist is observed to affect component independence,
yarn tensile strength, achievement of (or failure to reach)

FIGURE 1. Experiments of a model yarn with 2 cotton and 89 Dacron components at TM = 2.19 [20}: (a) multiple breaks at 11% extension,
(b) multiple breaks at 15% extension, (c) multiple breaks at 25% extension.
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FIGURE 5. Yarn cross section with experimental [20] and simulated ~ FIGURE 7. Effects of twist level on fracture behavior of model yarns

(experimental {20]).

response of a model yam with 40 cotton and 51 Dacron components at

™

3.26.

three different assumed structures made from these 91

the components.

full filament extension, overall shape of the yarn stress
strain curve and its general slope and, eventually,

work to tensile rupture.

THE ACTUAL YARN

As shown in Figure 4, the expetimentally determined

breaking strength of this structure is T, = 233.5 N.

A Structure of Parallel Filament Bundles

Reinforcing Effect of Twist

The yarn is now idealized as a system consisting of 91
comparisons may be helpful. An example is taken from components parallel to each other without interaction.

To further demonstrate the reinforcing chhanism of
twist to yarn structure and the contribution of lateral

compression to yarn strength, some calculations and
Figure 4, which shows a 4.37 twist multiplier yarn with The average breaking strength of the components has

10 cotton and 81 polyester components. We will dem- been experimentally determined as 1.20 N (cotton) and
onstrate the reinforcing effect of twist by comparing 2.40 N (polyester). Now, assuming all components reach
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(b) multiple breaks at 12% extension, (c) multiple breaks at 13% extension.

FIGURE 6. Experiments of a model yarn with 40 cotton and 51 Dacron components at 7M = 3.26 [20]: (a) multiple breaks at 11% extension,




420

their full strength, then the highest possible strength of
this whole structure will include the contribution of cot-
ton components, T, = 12.0 N, and the contribution of
polyester components, T, = 194.4 N. The strength of
the entire structure is T, = 206.4 N.

A Twisted Structure Without Intercomponent
Interactions

The structure is now idealized as a twisted structure
without intercomponent interactions. In this case, the
calculation takes into account the filament helix angles,
which change during yarn tension. If the yarn volume is
assumed to be constant during yarn extension, based on
the 33% breaking elongation indicated in Figure 4 and
using the relationships between yarn geometric parame-
ters [11], the ultimate helix angle of the yarn under 33%
elongation can be roughly expressed as

tan g, (1 — v,€,)
1+e

tan g,; = = (.7395 X tan qo,,, (1)
where v, = 0.5 and €, are the yarn lateral contraction
and strain, and g, , and g, , are the ultimate and the
original helix angles for each layer n of the yarn.

The maximum breaking strength of this structure can
be calculated as [27]

5
T,= 3 [(Npn(2.40 N) + Nc,(1.20 N)) cos qu,]

n=0
=195.19N . ' )

Of these three strength values, the experimentally deter-
mined strength T, is the highest. This has to be attributed
to the reinforcing effect of interfiber igterference in a
twisted structure since, without this interference, the
maximum strength of a yarn as indicated by T4 only
reaches about 80% of its real strength. Note that 80% is
still an overestimated value, since T; was calculated at
the most favorable condition when we assume all the
components fulfill their maximum strength. Considering
the discount of component contribution to yarn strength
in a real twisted structure due to component obliquity,
the significance of the effect of twist-caused interaction
between fibers due to the lateral compression within a
yarn is even greater.

A New Blended Filament Yarn Model
GENERAL MODEL DESCRIPTION

From this experimental work, we can make many
interesting observations and thus some assumptions to
form the basis for the new theoretical model introduced
in this paper.
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First, as seen in Figures 1, 3, and 6, the presence of
multiple breaks along a single cotton component illus-
trates the invalidity of the assumption that a broken
filament in a yarn ceases to contribute to yamn strength.
For even though the cotton component fails a few times,
it is still subjected to the full level of the local strain at
positions removed from the broken end. This buildup in
local stress (or strain) from zero at the position of the
break to the yarn strain at the given radius occurs through
a frictional mechanism.

Multiple breaks on one filament, prior to failure of the
total system, have been documented by researchers in the
composite materials field [5, 33] and result from load
transfer from the matrix by means of shear lag. The fact
that one break at a position doesn’t prevent other parts of
the same component from being tensioned and succes-
sively broken again implies the independence of each
filament segment from other segments of the same fila-
ment in terms of mechanical response to external load,
although they are physically connected to each other.
This phenomenon has been modeled for filament com-
posite materials [12, 13, 14, 28]. When modeling fila-
ment yarns, the minimum length of each filament seg-
ment, the so-called “critical length” [3, 5, 33], is
determined by the lateral pressure, the interfilament fric-
tional property, and the filament breaking strength. Thus,
it differs corresponding to different kinds of fibers and
different radial locations within the yarn, and it also
changes continuously during yarn extension. Therefore,
in a twisted structure, mechanically each filament can be
treated as a chain of independent filament segments of
changing number and length. Furthermore the breaking
strength of each segment on the same filament may vary
because of the statistical nature of material flaw distri-
bution over a filament length. :

The results of Figures 1, 3, and 6 show that multiple
breaks occur along a filament; however, yarn strength is
still governed by the transverse propagation of compo-
nent filament breakage. In other words, as expected, yarn
strength is determined by the weakest link of the yarn
instead of the weakest link of each individual compo-
nent.

These observations suggest a statistical treatment of
yarn strength by statistically treating the strength of each
component. To address the statistics of component
strength, we note (see Figures 1, 3, and 6) that each
component changes in length during tensioning due to
breakage. If we consider a component to be a chain of
segments where the number and length of segments
changes during loading, then the dependence of segment
strength on length must be taken into account. It has long
been recognized that a material’s strength is statistically
related to its dimensions, as governed by the well-known
weakest-link theory [24] and shown for yarns by Realff
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et al. [32]. According to the theory, the tensile strength of
a specimen increases with its decreasing length, There-
fore, the effect of changing length of these segments
during yarn extension has to be considered when pre-
dicting yarn strength. Note that the increase in filament
load will increase the slip length or exclusion zone in the
presence of constant lateral pressure [27]. However, the
observed decrease in filament segment length with load-
ing indicates that the increase in lateral pressure is the
dominant effect on critical length.

Also, the experimental results {21} provided in Figure
7 clearly demonstrate the twist effect on breaking
strength and indicate that there is an optimum twist level.
This phenomenon has been observed in both continuous
filament yarns [11] and staple fiber yarns {8]. The initial
increase in staple yarn strength with twist is attributed to
reduced fiber slippage, while the fall off of strength
beyond the optimum twist is attributed to the effect of
fiber obliquity.

Concepts such as multiple breaks of components dur-
ing yarn stretching, the continuing contribution of a

broken component to yarn strength, the important role -

that lateral pressure plays in determining the apparent
strength of each component segment, and the behavior of
yarn rupture and the statistical nature of yarn strength
~have not been satisfactorily incorporated into existing
yarn models, although they have been explored in single
filament composites [12, 13, 14, 28]. In this article, we
introduce a new yarm model based on the experimental
evidence and concepts for approaching the problem dis-
cussed earlier.

The model presented here is an extension of the Monte
Carlo model for predicting woven fabric tensile failure
proposed by Boyce et al. [3]. Their model consists of an
array of stochastic elements, each of which is assigned a
strength and exhibits various interactions with its neigh-
bors by means of load sharing rules. The manner in
which the strengths are determined from the data and
assigned to elements are critical aspects of the model, as
are the interaction/load sharing rules. As the model is
strained, weaker elements will fail and the load will be
redistributed to local neighbors by the load sharing rules.
Additional strain is then applied, more elements fail, and
so on, until final complete failure of a cross section
occurs.

For the blended yarn model proposed here, the yamn is
modeled as an array of stochastic elements where the
array columns are the individual components (the fila-
ments), and each component is further discretized into
segments (forming the rows of the arrays). The proper-
ties (strength) and behavior (critical length and load
sharing rule) of each segment strongly depend on the
component type (cotton or polyester) and the lateral
pressure, which, in turn, depends strongly on twist level
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and yam extension, both of which provide a strong
dependence of lateral pressure on the radial position of a
component (filament). This dependence on yarn exten-
sion necessitates an evolution in element properties and
behavior with yarn straining. Strengths are then assigned
to elements using a random number generator through a
Weibull distribution function for the component, where
the Weibull distribution depends on the component’s
length. Once initial strengths are assigned to each ele-
ment, a strain increment is applied to the yam, the
weakest element fails, and the load is locally redistrib-
uted. Load sharing depends on local lateral pressures and
the proximity of the unbroken element to the broken
element. Strain is then increased, the weakest element
fails, and the entire updating process is repeated.

Consequently, the whole issue of predicting the failure
process and ultimate strength of a blended yarn can be
posed as a question of predicting the statistical strength
of a twisted structure of component bundles with de-
creasing length and increasing strengths.

The brief computation process of this model is as
follows:

1. Model yarns are constructed containing the same
constituent filaments and filament placement as those
examined experimentally [20] to enable a direct compar-
ison of experimental and predicted resuits. The blended
model in question consists of the same two kinds of
components divided into sub-bundles based on the prin-
ciple of critical length presented above. At each strain
increment, analysis of the overall yarn stress level is
computed for convenience at the weakest model cross
section (the one with the most broken component seg-
ments). This is done because the strength of the yarn is
governed by the transverse propagation of component
filament breakage, as discussed previously.

2. The strengths of the segments are assigned based
on values radomly chosen from a Weibull distribution
with parameters (shape and scale) calculated from the
experimentally observed parameters and the modeled
length. :

3. The yarn strain increment is taken as the system
input. The component strains are then determined based
on their respective radial position in the model yarn. The
component load is derived on the basis of the given
component load-strain curve. Model yarn tension can
then be calculated from all of the individual component
tensions and the local lateral pressure.

4. Segment failure is determined by comparing seg-
ment strength with its component load. Once a compo-
nent segment is broken, other surviving members in the
same cross section will share its load based on the radial
position of each surviving member, the distance between
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the surviving member and the broken one, and the level
of yarn twist and tension.

5. After each increment of model yarn strain, the
lateral pressure, critical length of each component seg-
ment, and all relevant yarn geometric parameters are
updated. _

6. Steps 2 through 4 are repeated until the yarn fails,
which occurs when all of the segments in one Cross
section have failed.

Although our model uses the concept of Phoenix’s
chain-of-bundle approach [25, 26, 27], its extension is
significant as a result of the insight derived from the
experiments. First, the lateral compression in the yam is
included as a decisive factor. As in Phoenix’s work, the
effects of twist and component radial location within the
yarn are important parameters in our model. Another
difference is that in Phoenix’s model, the critical length
was kept unchanged, while in our model, critical length
is determined by component location, component type,
and more significantly local lateral compression, and it
decreases continuously even before any component
break occurs.

ASSUMPTIONS

Because of the complexity of the blended yarn struc-
ture, some assumptior s are needed to simplify the case
so that the mode} will be mathematically tractable. Note
that we are dealing with a model yam of continuous
components, where yarn structural irregularities and the
variation of yarn packing density can be considered
negligible. The following are our major assumptions:

1. The blended model consists of two kinds of com-
ponents, first a traditional continuous polyester filament
yarn, and second a pseudo-continuous yarn (actually a
conventional cotton yarn), each configured in an ideal-
ized helix. ,

2. The number of components in the model yarn cross
section is very large (this facilitates the derivation of
lateral pressure for the continuum case). - o

3. The components comprising the model are per-
fectly flexible so that the torsional and bending stresses
within the fibers may be neglected. .

4. All components of the same type have identical
load versus strain curves, that is, the shape variation of
the component load versus strain curves is ignored.

5. The relationship of size (length) and strength of
components follows the Weibull distribution.

6. The components are assumed to deform but with-
out change of volume, that is, a component’s Poisson
ratio is taken to be v, = 0.5.

7. This analysis ignores the dynamic effect during the
load sharing process after a component is broken.
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8. Component breakage will not change the value and
distribution of lateral pressure. In other words, Hearle et
al.’s [11] equations for lateral pressure will be used as
described below. '

9. To further simplify the problem, we use the aver-
age values of such component parameters as initial di-
ameter, specific volume, and the frictional coefficient
between components.

As to the yarn parameters and yarn geometry used in
the model, we have adopted the relations and equations
provided by Hearle er al. [11] shown in the following
sections. Note that although the resuits below are derived
based on a filament yarn, we assume that they are valid
in our model yarn case as well.

YARN PARAMETERS

Yarn helical period (cm), A = 1/(turns of twist per
cm). Yarn surface helical angle (degrees) is given by

tan a = 0.0112¢,°TM 3)

where TM is the yarn twist multiplier. Yarn lateral con-
traction or Poisson’s ratio,

_dRJR, _dR/R,
WE T Tdnik T T e X

where €, is yamn strain.

GEOMETRY IN A YARN CROSS SECTION

Base angle between adjacent components in nth layer
is given by dividing 360° by the number of fibers in each
layer n. The radius of the nth layer r, is

ro=20 )
rn=l,2,...=rn—1+rc,n—l+rc,n ’ (6)

where r, is the average radius of the components in
layer n. The helical angle g for the components in the nth
layer is

27r,

= . ™

tan g =

YARN STRAIN VERSUS COMPONENT STRAIN

Because we employ an iterative algorithm in this
model, where each iteration can be considered a defor-
mation of infinitesimal strain, we have adopted the result
from Hearle et al. [11] in an incremental form to govern
the yarn and constituent component strain relation:

Ae, = Ae,(cos’q — v, sin*q) , ®

<«
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where v, is the Poisson’s ratio of yarn, and €_ and ¢, are
the component strain and yarn strain, respectively. '

CoMPONENT LOAD VERSUS STRAIN RELATIONSHIP

As we are attempting to simulate the entire yarn

fracture process, instead of assuming a Hooke’s law

between component stress and strain, the pretested
component load-strain curves (as in Figure 8) are
stored into our algorithm to obtain the load level
corresponding to each incremental component strain,
Note that the load-strain curves for the cotton and
Dacronl components were actually taken from Mon-
ego [20], and we will compare the yams simulated
with these components to those experimentally tested
by Monego. The Dacron2 component is artificially
designed such that it has an ultimate strength and
breaking strain identical to Dacronl but a different
shape, one being convex and the other concave. The
comparison of two yarns with the same cotton/poly-
ester blend ratio but made with Dacronl and 2, re-
spectively, will show how the shape of the component
loadsstrain curve can influence yarn properties.
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FIGURE 8. Load-extension curves of the components uséd in the
model: (a) the cotton and Dacronl components [20], (b) the Dacronl
and Dacron2 components.

LATERAL PRESSURE IN A BLENDED YARN

Although there are a few derivations for the distribu-
tion of lateral pressure within a yarn, Hearle et al.’s result
[11] is the most familiar and is assumed to be applicable
to our model yarn. We use it here with some minor
modifications to suit the blended yarn case.

Even in a blended yarn with different constituent com-
ponents, the lateral pressure o, acting on the different
components at the same radial position should be iden-
tical because the lateral action and reaction between the
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components in the same radial positions have to be the
same regardless of the component types. According to
Hearle’s derivations for a monocomponent filament yarn,
we have in our case the relation between axial stress o,
and lateral pressure o

c? c?
o,= ECEYI:P - v,(l - ?)] -2y, , )]

where E, and v, are the component modulus and Pois-
son’s ratio, and €, and v, are the model yamn strain and
the model yarn Poisson’s ratio, whereas

2 2 r,,2 2
u=(1—c)R— +c (10)
Y.

and

c?=cos’a 1)
are the parameters for component radial positions in the
yars.

Since in ‘our blended yarn there are two -different
components (components ‘1 and 2 with blend ratio &,
+ b, = 1), we have used two forms of Equation 9. For
an area of unit area size, with v ,; = v, = 0.5 as
assumed before, we obtain :

S c? '
o,= Ece,[;‘a - v,(l - ;2-)] -0, (12)
where

E,=bE,+ bE, (13)
This indicates that the distribution of the lateral pressure
within a blended yarn has a form identical to that of a
monocomponent yarn as long as a mean modulus E, is
used as well as v,; = v_,.
Following the same analysis as Hearle’s, the lateral
pressure o, at radial position r,, in the yatn is
o= gE'cey . (14)
As the “hydrostatic” lateral specific pressure (g/cm?), o,
acts perpendicularly to the component axis, and the nor-
malized lateral pressure g at radial position r, can be
expressed as [11] b

o
8T Fe

ety

.c2 1 .
=-§-(1+v,) P—l +v,Inu . (15)

These equations are used in our computer algorithm to
calculate and update the distribution of the lateral pres-
sure within the blended yarn.
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FILAMENT CRITICAL LENGTH [,

Theoretically, the effects of yarn structure and exten-
sion will affect component mechanical behavior in two
ways. One is due to the fact that components within the
yarn are under both axial tension and lateral compres-
sion. This will lead, as expected, to a mechanical behav-
ior different from a uniaxial case. The second effect is
associated with the fragmentation phenomenon. Under
the constraint of lateral compression, a component be-
haves as a chain of mechanically independent segments.
Each possesses mechanical properties different from
those of other components and other segments in the
same component due to the statistical nature of compo-
nent properties. In our model, only the second factor is
included, and we ignore the effect of biaxial loading on
component response due to the lack of information about
the biaxial properties of the components.

As revealed in the preceding experimental results, a
large number of isolated yarn component breaks occur
prior to complete model yarn failure. Isolated breaks
were also predicted in the fabric tensile strength simula-
tions of Boyce et al. [3]. This is similar to what was
called the cumulative weakening phenomenon in the
fracture of fibrous composite materials that were mod-
eled as being subjected to equal load sharing [5]. As long
as the model structure does not collapse, the component
breaks will continue to occur until the length of the
component segments reaches a minimum value where its
load can no longer build up to its segment breaking
strength. This length is well known as the critical length.
If T, is the tension that causes the component to break,
it follows that the minimum length on which a broken
segment can no longer build up its tension again from the
broken position or the minimum length into which a
component can be broken is [19]

_ 27,
" mdpo,

c ) (16)
where u is the frictional coefficient, d is the component
diameter, and o, is the local lateral pressure. Note that
we will have changing critical lengths at a yarn cross
section corresponding to two component types with dif-
ferent T, and changing lateral pressure at different radial
positions. —

Remember that this so-called critical length [, is dif-
ferent from the effective length in relation to fiber slip-
page in the staple yarn case where fibers tend to slip over

each other at their ends due to inadequate frictional

gripping. The definition of the effective length in staple
yarn [11] is

__5
" mdpoy

17

e
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Since the lateral compression g is approximately pro-
portional to the fiber tension 7, [11}, I, stays largely
constant for a given fiber during staple yarn extension.
However, I decreases as o, increases during yarn exten-
sion. Although the strength 7, also increases due to
segmental shortening, its increase is much less than that
of o}, so there is no proportionality between T, and 0.
In fact, /,, is the maximum value of /, because T, is the
limit of fiber tension T.

FILAMENT STRENGTH VERSUS ITs LENGTH

According to the weakest-link theory [24], statistically
the strength of a component will change if its length is
altered, following the Weibull distribution [36]. That is,
the strength of a component T at any given length [ will

be
=1 -e (5]

where T, is given by

I —1ip
Tl = TO( l—o) ’

where T, is called the scale parameter and p is the shape
parameter.

We tested the strengths of both cotton and Dacron
components at a gauge length of [, = 20.32 cm [20],
and the statistical test on the validity of the Weibull
distribution involved the Kolmogorov-Smirnov good-
ness-of-fit test [1] at a significance level of a > 0.05. The
results fit the two-parameter Weibull distribution quite
well. The maximum likelihood estimates of the Weibull
shape and scale parameters and the average strengths for
both components are summarized in Table L

(18)

19)

TABLE 1. Parameters related to component strength.

Parameter Value Unit
Gauge length for component strength test .. 2032 cm
Average strength of cotton component - -1.201 N
(based on 20 specimens [20])
Average strength of Dacron component 2.405 N
(based on 20 specimens [20])
Weibull shape parameter for cotton component 8.75
Weibull scale parameter for cotton component 1.513 N
Weibull shape parameter for Dacron component ~ 44.46
3.273 N .

Weibull scale parameter for Dacron component

LoOAD SHARING RULE

Although there have been some reports on the mech-
anism of the load sharing process between broken mem-
bers and still surviving members during yam extension

v
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[27, 29], this is still an issue that is poorly understood.
Consequently, we will propose a different approach.
Note that there is important evidence shown by the
experimental results that however the load is shared, it
has to be shared locally along the model yarn length, that
is, among all surviving component segments at the same
yarn cross section where the break took place.

In addition, there is another parameter to be consid-
ered—the effect of yarn twist level on the load sharing
process. The question is, if a component segment with
tension 7, breaks, what is the magnitude of the total
extra load shared by all other N, surviving members?
The preceding experimental results show the significant
effect of yarn twist level on the yarn strength and fracture
behavior, which would lead to a conclusion that for the
structures with different twist levels, the load shared
from a broken member of strength T, by all the remain-
ing members should not only depend on T, but also on
the twist level. In other words, twist will intensify the
magnitude of the shared load, similar to the stress con-
centration effect.

Grosberg and Smith [8] showed that the lateral pres-
sure distribution in a low-twist sliver under extension is
proportional to the square of the twist.. Here, we have
used a load sharing rule that assumes stress concentration
due to a broken segment is proportional to the twist
multiple. Since it is very difficult to find a feasible means
to quantitatively determine the twist effect in the yarn,
we have selected a factor for one of the yarns based on
our trials on the computer, and we have used that value
to model all the other yarns. With this method, the
magnitude of the total extra load is 5 X (TM)*T,.
Furthermore, this load should be shared by all surviving
members in the same yarn cross section, and the load
shared by one member should be inversely proportional
to the distance between this member and the broken one,
and should also be related to the ring location of this
member in the yarn:

€os g;
AT, = c 2%
Ty

(20)

where AT, is the load shared by member i, r,; is the
distance between the two components, and C is a load
sharing factor obtained by satisfying

NJ
> AT, =5 X (TM)*T, 1)
i=1

YARN-COMPONENT TENSION RELATIONSHIP

Equilibrium provides that the tension on a yarn equals
the tension across any yarn section or, in the case of a
- calculation using a discrete model, to the sum of the
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tension of all the component segments in any yarn cross
section. Hearle ez al. [11] and others [16, 37] completed
the derivations of yarn tension based on the axial stress
and lateral compression within the yarn using the con-
tinuum approach. However, in the case of a discrete
model, the conventional way of calculating yarn tension
T, based on all component tensions is one of summing
all component axial tensions T; discounted by cos g;,
where g; is the helix angle of the component [27], i.e.,

N,
T,= > T,; cos g; (22)
i=1

This method, however, excludes the contribution of
lateral pressure to model yarn tension. To illustrate the
question, a force equilibrium analysis is desirable. If we
take a cut perpendicular to the yarn axis and take a single
component segment out of the bundle, we obtain a force
equilibrium on this segment, where T, is the axial com-
ponent tension in the direction of a helix angle g, to the
yarn axis, and o is the circumferencially distributed
lateral compression perpendicular to the component axis.
A simple force resolution gives the resultant force T, in
the direction of the yarn axis,

N;

. )
T,= 2 (Tci cos g — oA, sin g; tan qi) , (23)

i=1

" where A_; is the cross-sectional area of the component i.

For components parallel to the yarn model axis, so that
q; = 0, like those in the yarn center, their contribution to
yarn tension will only come from the axial tension 7.;,
since the lateral compression is balanced or cancelled.
However, for other components with g; > 0, the trans-
verse compression contributes to yarn tension.

PARAMETERS UPDATED AFTER EACH ITERATION

The system input of this model is the yarn strain
increment Ae,, and all the new parameters after the ith
iteration can be obtained using the following equations:

1. Period of helical geometry,

B =h(1 + Afy) s (24)
and new yarn length,
Ly,'+1 = Ly'(l+ Aey) (25)

The new length of each component can be similarly

updated.

2. Radius of component in layer n,

(26)

Tengit) = rc,u.i(l - VfAec) s

where the component is considered constant volume, that
is, v = 0.5.
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3. Yamn radius,

Ry,x+l £ + rc,S ’ (27)

where rs, the radius of layer 5, is given by Equation 6,
and the component radius in layer 5, r. s, is calculated by

Equation 26.
4. Yarn lateral contraction,
Ryi - Ry.'+1
Ry
V1 =~ . @)
y .
5. Component position, helical angle,
2%r;4
tan g, ;4 = . (29

Predicted Results and Discussion

Tables I and II summarize all the parameters used in
the model. We have simulated a series of cases using the
blended yarn model implemented in C-++ on a personal
computer. Several results predicted by this model are
shown below in comparison with the experimental re-
sults illustrated previously.

Figures 2, 4, and 5 present both the experimental and
theoretical predictions simulating the blended yamns.
There is a good agreement between the experimental and
predicted load-strain responses. Although the predicted
strength and strain at failure is slightly lower for the
model results, the general shape and the trends of the
experimental data are well captured.

The simulated failure patterns of the components
shown in Figures 9, 10, and 11 are at strain levels slightly
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TasLe II. Other component properties used in the model.

Property Value Unit
Specific volume of cotton component 0.649 cm?®
g
Diameter of cotton component 824 x 1074 cm
Surface frictional coefficient of cotton
component 0.20
Specific volume of Dacron _‘_’_‘B:
component 0.725 g
Diameter of Dacron component 83.7 X 1074 cm
Surface frictional coefficient of
Dacron component 0.26

different from those in the experimental cases. We ex-
pected this since the modeled strain at failure was also
slightly lower than the experimental response. There is
good agreement in the patterns for the yamns of Figures 1
and 9 and Figures 3 and 10. The most visible discrepancy
between the experimental and predicted results, how-
ever, lies in the pattern of multiple breaks for the blended
yarn with 39 cotton components and 52 polyester com-
ponents. The predicted pattern shows a less concentrated
propagation of yarn breaks. '

The predicted twist effect on yarn strength and frac-
ture behavior is shown in Figure 12. The load versus
strain responses$ in Figure 12 corresponding to various
twist levels are quite close to the experimental ones in
Figure 7 for the same yarn model. Both results show a
decrease in the slope of the load versus strain curve with
an increase in the twist multiple. The trends of twist
influence on yarn breaking strength and breaking strain
are well captured by the model, but the magnitude of the
difference between the values at the various twist levels

FIGURE 9. Predictions of the model with 2 cotton and 89 Dacron components at 7M = 2.19: (a) multiple breaks at 8% extension, (b) nﬁlﬁpic
breaks at 8.6% extension, (¢) multiple breaks at 24% extension.
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FiGURE 10. Predictions of the model with 11 cotton and 80 Dacron components at TM = 4.37: (a) multiple breaks at 7.8% extension, (b)

multiple breaks at 9.1% extension, (c) multiple breaks at 19.2% extension.
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FIGURE 11. Predictions of the model with 40 cotton and 51 Dacron components at TM = 3.26: (a) multiple breaks at 7.3% extension, (b)
multiple breaks at 8.0% extension, (c) multiple breaks at 8.6% extension.

is not as great as those experimentally observed. For
example, the predicted maximum difference in strain to
failure (strain at the maximum load) for the set of yarns
shown in Figure 12 is 1%, while the observed maximum
difference was 5% from Figure 7.

Figure 13 shows the predicted results of two
blended yarn models with the same constituent com-
ponents and identical characteristics, except that the
shapes of the stress-strain'curves of the Dacron com-
ponents: are different, as shown in Figure 8. The first
model used Dacronl, which has a more or less convex
shape, while the second used the Dacron2 concave
curve. A given strain level generates lower stress in
Dacron2 than in Dacronl, as can be easily seen from

e TM 0.54
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—TM217
140 S ——— PN T™M3.25
j — —~TM4.34
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FiGure 12. Effects of twist level on the fracture behavior of yarn

models (predicted).



FIGURE 13. Predicted shape effect of component
load-extension curves.

their load-strain curves. In other words, at the same
strain level, Dacron2 components will have more po-
tential to share a load without failure than Dacronl,
when a component breaks. As a result, the Dacron2
components in the second model survived the initial
cotton component fracture and could still carry the
load until final failure, whereas the Dacronl compo-
nents in the first model failed along with their cotton
counterparts when the loads from the broken cotton
components shed onto them, leading to the different
system of fracture behavior shown in Figure 13. This
clearly indicates the potential for the model to aid
blended yarn design. Blended yarns can be simulated
before they are constructed, which may decrease the
time to market for new yarns. Also, this kind of
modeling can lead to the design of fibers with load-
strain responses that will be used to construct yarns
with the mechanical responses desired.

Conclusions

This study has involved a real synthetic filament
yarn and a pseudo-filament yarn (staple cotton) whose
load-elongation properties are drastically different.
When combined in a blended structure, the pseudo-
filament system is subjected to early failure of the
more brittle component, leading to fragmentation and
overall structural softening, and even stepwise load
reduction.

Although the predicted results we present are limited
and there are still many more cases to be investigated
with this model, we can draw a few conclusions. First,
contrary to Hearle ez al.’s well accepted conclusion that
“In continuous-filament yarns, twist is not necessary for
the attainment of tensile strength (in fact, it reduces it)
[111.”, our study shows that twist-caused lateral pressure
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considerably raises the overall strength of a blended yam
by increasing the apparent strengths of the segments of
its individual components.

Second, because of the increasing strength of compo-
nent segments due to lateral pressure and the dependence
of lateral pressure on the ring location in the yarn model,
for the same blend ratio, the ring location of certain kinds
of components in the model will be a very significant
factor and may lead to entirely different yarn fracture
results.

Third, because of the load sharing effect, in cases
where two kinds of components have the same average
breaking strength and extension, the shape of the com-
ponent stress-strain curve will become a dominant factor
and may have a decisive effect on system fracture be-
havior.

Fourth, yarn tension should be equal to the tension
of any cross section of the yarn. However, as there are
different numbers of active (load carrying) component
segments on each cross section after the initial breaks
of the constituent components, the tension on each
component at different cross sections may vary. This
indicates that the tension along a single whole com-
ponent is not uniform, and will cause an irregular
extension along the component as supported by the
necking mechanism of the components in a broken
model sample.

Fifth, the initial increase of continuous yarn tenacity as
the twist rises from zero is attributed to the lateral com-
pression in two ways. The first is the increasing apparent
strength of the filament segments due to the rising lateral
constraint. The second is the direct contribution to yarn
strength of the lateral compression acting on those in-
clined components, which becomes more significant as
the twist increases.

Sixth, another important issue revealed in this study is
the influence of a structure on its constituent components
during loading. A similar mechanism has been reported
in fabric studies [3, 18, 34] where the’ interactions of
those components (yarns) during fabric extension will
enhance the apparent strength of the yarns so that the
overall strength of the fabric will be much higher than
that calculated based on individual isolated yarns. This
structural assistance mechanism should be used in rein-
forcing some fibrous structures.

Finally, because of this structural assistance, it is often
meaningless to deal with the mechanical properties of the
constituent components isolated from a specific struc-
ture, since these properties will alter once the component
is assembled into the structure. It may be desirable to
designate new conditions (close to the real situation of
the structure) under which the properties of the compo-
nent should be determined.




MAyY 2000

ACKNOWLEDGMENTS

We would like to thank the Fibers Department of

E. 1. du Pont de Nemours & Co. for providing financial
and technical support for this work, and for the guid-
ance and encouragement of staff member Dr. Don
Shiffler (currently at North Carolina State University).
We acknowledge Warren Taylor, who translated the
program from FORTRAN to C++ and improved the
efficiency of the algorithm. This study is part of a
broad program at MIT and Georgia Institute of Tech-
nology on the translation of fiber properties into yarn
and fabric behavior.

10.

11.

12.

13.

14.

Literature Cited

. Breiman, L., “Statistics: With a View Toward Applica-

tions,” Houghton Mifflin Company, Boston, MA, 1973.

. Backer, S., Staple Fibers: The Story of Blends, in “Poly-

ester: 50 Years of Achievement,” D. Brunnschweiler
and J. W. S. Hearle, Eds., Textile Institute, U.K., 1993,
p. 94.

. Boyce, M. C., Palmer (Realff), M. L., Seo, M., Schwartz,

P., and Backer, S., A Model of the Tensile Failure Process
in Woven Fabrics, J. Appl. Polym. Sci. Appl. Polym. Symp.
47, 383 (1991).

. Dogu, I, The Distribution of Transverse Pressure in a

Twisted Yarn Allowing for the Fiber Migration and Vari-
ation of Fiber Packing Density, Textile Res. J. 42, 726
(1972).

. Dow, N. F., Study of Stress Near a Discontinuity in a

Fiber-Reinforced Composite Metal, Space Mechanics
Memo no. 102, GE Space Sciences Lab, Jan. 1961.

. Galileo, Galilei, “Dialogue Concerning Two New Scienc-

es,” Leyden (1638), translated by A. De Salvio and A.
Fabaro, Evanston, IL, 1914,

. Gottfried and Byron, S., “Elements of Stochastic Process

Simulation,” Prentice-Hall, NY, 1984,

. Grosberg, P., and Smith, P. A., The Strength of Slivers of

Relatively Low Twist, J. Textile Inst. 57, 15 (1966).

. Gurney, H. P., Distribution of Stress in Cotton Products, J.

Textile Inst. 16, 269 (1925).

Hamburger, W. J., The Industry Application of the Stress-
Strain Relationship, J. Textile Inst. 40, 700 (1949).
Hearle, J. W. S., Grosberg, P., and Backer, 8., “Structural
Mechanics of Yarns and Fabrics,” vol. 1, Wiley-Inter-
science, NY, 1969, p. 180.

Hui, C. Y., Phoenix, S. L., Ibnabdeljalil, M., and Smith,
R. L., An Exact Closed Form Solution for Fragmentation
of Weibull Fibers in a Single Filament Composite with
Application to Fiber Reinforced Ceramics, J. Mechan.
Phys. Solids 43, 1551-1585 (1995).

Hui, C. Y., Phoenix, S. L., and Kogan, L., Analysis of
Fragmentation in the Single Filament Composite: Roles of
Fiber Strength Distributions and Exclusion Zone Models,
J. Mechan. Phys. Solids 44, 1715-1737 (1996).

Hui, C. Y., Phoenix, S. L., and Shia, D., The Single
Filament Composite Test: A New Statistical Theory for

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28,

29.

30.

31.

32

429

Estimating the Interfacial Shear Strength and Weibull Pa-
rameters for Fiber Strength, Composites Sci. Technol. 57,

1707-1725 (1998).

Kemp, A., and Owen, J. D., The Strength and Behavior of
Nylon/Cotton Blended Yarns Undergoing Strain, J. Textile
Inst. 46, T-684 (1955).

Kilby, W. F., The Mechanical Properties of Twisted Con-
tinuous-Filament Yarns, J. Textile Inst. 585, T589 (1964)..
Lord, P. R., Yarn Modeling—A Discussion of the Needs
and Opportunities, in “Proc. Cotton Incorporated Minicon-
ference,” Nov. 3-4, 1988.

Lord, P. R., and Radhakrishnaiah, P., A Comparison of
Various Woven Fabrics Containing Friction, Rotor, and
Ring Spun Cotton Yarn Fillings, Textile Res. J. 58, 354
(1988).

Machida, K., Mechanics of Rupture in Blended Yarns,
Masters thesis, M.L.T., Cambridge, MA, 1963.

Monego, C. J., The Mechanics of Rupture of Cotton-
Dacron Yarns, Masters thesis, M.LT., Cambridge, MA,
1966.

Monego, C. J., and Backer, S., Tensile Rupture of Blended
Yarns, Textile Res. J. 38, 762 (1968).

Monego, C. J., Backer, S., Qui, Y. P., and Machida, K.,
THustration of Stress-Strain Behavior and Yam Fragmen-
tation in a Pseudo-Hybrid Composite System, Composite
Sci. Technol. 50, 451 (1994).

Noshi, H., Shimadu, M., and Kusano, T., Study on Blended
Yarns, Part I: The Tensile Strength of Twisted Yarn Con-
sisting of Two Kinds of Continuous Filaments, J. Textile
Mech. Soc. 42, 91 (1959).

Peirce, E. T., Tensile Tests for Cotton Yams, V: ‘The
Weakest Link’—Theorems on the Strength of Long and of
Composite Specimens, J. Textile Inst. 17, 355 (1926).
Phoenix, S. L., Probabilistic Strength Analysis of Fiber
Bundle Structures, Fiber Sci. Technol. 1, 15 (1974).
Phoenix, S. L., Probabilistic Inter-fiber Dependence and
the Asymptotic Strength Distribution of Classic Fiber Bun-
dles, Int. J. Eng. Sci. 13, 287 (1975).

Phoenix, S. L., Statistical Theory for the Strength of
Twisted Fiber Bundles with Applications to Yarns and
Cables, Textile Res. J. 49, 407 (1979).

Phoenix, S. L., Ibnabdeljalil, M., and Hui, C. Y., Size
Effects in the Distribution for Strength of Brittle Matrix
Fibrous Composites, Inst. J. Solids Struct. 34, 545-568
(1996).

Pitt, R. E., and Phoenix, S. L., On Modeling the Statistical
Strength of Yarns and Cables Under Locatized Load-Shar-
ing Among Fibers, Textile Res. J. 51, 408 (1981).

Platt, M. M., Mechanics of Elastic Performance of Textile
Materials, Part IIl: Some Aspects of Stress Analysis of
Textile Structures—Continuous Filament Yarns, Textile
Res. J. 20, 1 (1950).

Ratman, T. V., et al, Prediction of the Quality of Blended
Yarns from That of the Individual Components, Textile
Res. J. 38, 360 (1968).

Realff, M. L., Seo, M., Boyce, M. C., Schwartz, P., and
Backer, S., Mechanical Properties of Fabrics Woven from
Yarns Produced by Different Spinning Technologies: Yarn



430

Failure as a Function of Gauge Length, Textile Res. J. 61,
-517-530 (1991).

33. Rosen, B. M., “Fiber Composxte Materials,” American
Society for Metals, OH, 1965, p. 37. ’

34. Shahpurwala, A. A., and Schwartz, P., Modeling Woven
Fabric Tensile Strength Using Statistical Bundle Theory,
Textile Res. J. 59, 26 (1989).

35. Sullivan, R. R., A Theoretical Approach to the Problem of
Yarn Strength, J. App. Phys. 13, 157 (1942).

Textile Res. J. T0(5), 430-436 (2000)

TEXTILE RESEARCH JOURNAL

36. Weibull, W., A Statistical Distribution Function of Wide
Application, J. Appl. Mech. 18, 293 (1951).

37. White, J. L., Chen, C. C., and Spruiell, J. E., Some Aspects
of the Mechanics of Continuous Filament Twisted Yarns
and the Deformation of Fibers, App. Polym. Symp. (27),
275 (1975)

Manuscript received Ne ber 6, 1998; pted April 27, 1999.

0040-5175/$2.00




