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Abstract 

The irreversibility of heat conduction in porous media, its relation to effective thermal conductivities 
(ETCs), and the optimization of thermal conduction process are investigated in this work based on the 
concept of entransy dissipation. Two more new concepts of reference entransy dissipation and 
nondimensional entransy dissipation are first introduced. Then it is showed that the nondimensional 
entransy dissipation rate (NER) can be employed as an objective function to evaluate the efficiency of a 
thermal transfer process in a porous material. By using this criterion and a newly developed structure 
growth algorithms, different porous structures were generated and the corresponding values of both ETC 
and NER were derived to illustrate the usefulness and power of using NER to assess the thermal 
performance of the materials. 

The results show that the effective thermal conductivity not only influences the heat transfer ability of 
porous media, but also reflects the irreversibility of heat conduction in porous media, which is a dissipation 
coefficient for heat transfer. Meanwhile, decreasing the structural particle size will increase the contact 
points, i.e. more heat bridges, decrease the temperature gradient nearby the contact points, and hence 
significantly increase the effective thermal coefficient of porous media. Essentially, decreasing the particle 
size will result in a more uniform distribution of both temperature gradient and local entransy dissipation 
rate along the heat flow direction, and consequently lead to a larger effective thermal conductivity. 
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1 Introduction 
 

The effective thermal conductivity (ETC) is 
one of the most important properties of complex 
media, for its significance in such wide areas as 
engineering design, energy saving, geophysical 
exploration, biological and medical engineering 
[1-8], and has been of great interests for scientific 
research and investigation. With respect to the 
design function, which is the goal of engineering  
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disciplines [9], optimizing the material ETC is 

often the key for efficiency and economy. 
In most previous theoretical analyses, the 

macro material ETC was assumed a simple 
function of the phase fractions of the constitutes 
based on the effective medium theory (EMT) or 
the network combinations of Series and Parallel 
models [10-13], while the effects of phase 
distribution and inter-phase interactions were 
mostly ignored, leading to gross errors in 
prediction of the overall material ETC. 
Meanwhile, giving the difficulties encountered 
in seeking theoretical solutions on one hand, and 
tedious and intricate experimental measurements 
on the other, numerical approach has been 
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regarded as a better alternative in dealing with 
behaviors of multiphase media, owing to the 
rapid development of computational techniques. 

The first main step of effective numerical 
modeling of a complex medium has to include 
describing the structural details and the 
interactions in the material properly and 
adequately. Several structural reproduction 
methods have been proposed, including the 
discrete reduced distance method by Tacher et al. 
[14], the Monte Carlo annealing algorithm by 
Mohanty [15] and most recently the 
multi-parameter random generation-growth 
method, termed quartet structure generation set 
(QSGS) by Wang et al. [16]. The second step is to 
solve the governing equations efficiently by 
such available numerical tools as the traditional 
partial differential equation (PDE) solvers, 
including the finite difference [17] and finite 
element methods [18], the Monte Carlo method [19] 
and the lattice Boltzmann method [16, 20]. 
However, when the porous structure becomes 
complicated, especially when the multi-phase 
conjugate heat transfer problem is considered, 
the traditional PDE solvers not only demand 
huge or often prohibitive computational 
resources [21, 22], but often fail to obtain 
acceptable results as well. Therefore, in dealing 
with heat transfer processes in porous media 
with less grid number for the same accuracy, a 
high-efficiency lattice Boltzmann algorithm 
proposed by Wang et al. [16] to solve the energy 
equations in multiphase transport problems 
becomes highly desirable; the method has shown 
to lead to predictions agree well with the 
theoretical results for some benchmark cases, 
and with the existing experimental date for much 
more complex multiphase porous media. 
   Based on the above theoretical, experimental 
or numerical methods, the researchers have 
derived a great deal of useful conclusions on 
porous media. For example, porosity is the most 
important factor that determines the ETC of 
porous media [23], decreasing the average particle 
size increases the overall ETC, and enlarging the 
directional growth probability along the 
temperature gradient also enhances the ETC in 
this direction [16]. However, these conclusions 
are still of phenomenological descriptions, while 
the physical essentials lay deep underneath, 

which calls for further studies to explore the 
more fundamental issues. 
   As well known, heat transfer is an 
irreversible process. When heat transfers in an 
isothermal system from a higher temperature to 
a lower one, although the total quantity of the 
thermal energy is conserved, the same amount of 
energy is unable to cause a reverse of such heat 
flow without additional external energy. In other 
words, the heat transfer ability of the same 
energy is reduced by the “inherent equivalent 
thermal resistance”. To characterize such heat 
transfer ability, a new physical concept, (QvT)/2, 
termed as the entransy was introduced by Guo et 
al. [24]. Based on this new theory, the entransy 
dissipation was used to measure the 
irreversibility of heat transfer processes, and all 
of these concepts have been validated with 
numerous examples in heat conduction [24], heat 
convection [25-27] and heat radiation [28]. 
   The objective of this contribution is to 
investigate the relationship between the ETC of 
porous media and the irreversibility of heat 
conduction processes in terms of the entransy 
dissipation. A few new concepts including the 
characteristic entransy dissipation and the 
nondimensional entransy dissipation (NER) are 
first introduced; and then the relationship 
between the NER and the ETC of multiphase 
media will be investigated for materials with 
regular and random microstructures, respectively. 
Finally, the particle size effects on the ETC of 
micro-granular porous media are further 
explained using the entransy dissipation 
analysis. 
 
2 Irreversibility of heat conduction in 

porous media 
 

For heat conduction in media without a heat 
source, the thermal energy conservation equation 
is 

p h
Tc q
t

�iρ ∂
= −∇

∂
,          (1) 

where ρ is the density, cp the specific heat 
capacity, T the temperature, t the time, hq�  the 
heat flux density. 

Multiplying both sides of equation (1) by 
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temperature, T, yields the entransy balance 
equation 

( )p h h
Tc T q T q T
t

� �iρ ∂
= −∇ + ∇

∂
.     (2) 

Introducing the entransy density 21
2vh pc Tε ρ= , 

the balance equation (2) can be rewritten into 

( )vh
h ht
�iε ε φ∂

= −∇ −
∂

.            (3) 

The left term in equation (3), vh
vht
�ε ε∂

=
∂

, is the 

time derivative of the internal entransy density. 
The first term on the right is the entransy 
transferred in the process, while the second term 
is defines as the dissipation function of entransy 
[24]. 

2
h hq T k T� iφ = − ∇ = ∇ .       (4) 

Where k is the thermal conductivity. Equation (4) 
resembles the dissipation function of mechanical 
energy in viscous fluid flow and can thus be 
termed as dissipation rate of the entransy. 
Integrating equation (4) in the entire 
computational domain gives the total entransy 
dissipation rate, which represents the overall 
irreversibility of heat conduction in the media.  

   
2

h hdV k T dVφ
Ω Ω

Φ = = ∇∫∫∫ ∫∫∫ .   (5) 

Where Ω is the heat conduction domain and V is 
the total volume.  

It is to note that unlike the thermal 
conductivity k of a simple monolithic solid, the 
ETC for a complex multiphase system, keff, is no 
longer an intrinsic material property, for it is also 
related to such external factors as the thermal 
and geometry boundary conditions and the 
material internal structures including porosity. 
To assess the system behavior, we have to 
establish an objective function. Among the 
various ETCs the system can possess, we select 
the minimum one, kec, as the reference heat 
conductivity. The reference entransy dissipation 
rate, Φhc, is then introduced as 

Φhc = kec ΔT L( )2 V0 .        (6) 

where, ΔT and L are the temperature difference 
and the distance between the hot end and the 
cold end, respectively. Vo is the unit volume of 
the media. For a specific heat conduction 
process in a given multiphase system, kec, ΔT, L 
and Vo are all constant, so this reference entransy 
dissipation is a fixed value. 

Furthermore, by scaling the local thermal 
conductivity k with kec, the local temperature 
gradient with ΔT/L and the total volume with Vo, 
the non-dimensional entransy dissipation (NER) 
rate can be defined as 

2

h
h

ec o hc

Tk dVN
k T L Vφ Ω

⎛ ∇ ⎞ Φ
= =⎜ ⎟Δ Φ⎝ ⎠
∫∫∫ .  (7) 

This NER rate, hNφ , is the objective function 
we intended to establish and it has the following 
characteristics: 

a. Nφh ≥ 1 , thus representing the ratio of the 
entransy dissipation enhancement due to the 
presence of the phase with higher thermal 
conductivity. In practice for a multiphase system, 
kec is the smallest one out of the thermal 
conductivities of all phases. 

b. Unlike keff (ETC), the system Nφh  (NER 
rate) is independent of other non-intrinsic 
conditions. Nφh  measures the heat transfer 
irreversibility, just like the electrical energy 
dissipation in electricity or mechanical energy 
dissipation in mechanics. In other words, NER 
describes the efficiency of a thermal conduction 
process in a material, whereas ETC reflect the 
material resistance to thermal transfer. 

c. As a result, Nφh  can be used as a criterion, 
via variational calculus, to optimize the structure 
and conditions in a thermal conducting process, 
very useful and advantageous in novel material 
design. 

 
3 Numerical methods 

As stated above that closed theoretical 
solutions of the temperature field can only be 
obtained for such ideal structures as uniform, 
series or parallel distribution of each 
non-interactive phase. For most real complex 
media, the temperature field and thermal 
responses should be obtained numerically. 
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The lattice Boltzmann method (LBM) is 
intrinsically a mesoscopic approach based on the 
evolution of statistical distribution on the lattices, 
and has achieved considerable success in 
simulating fluid flows and associated transport 
phenomena [29–32], for especially its easy 
implementations of multiple inter-particle 
interactions and dealing with complex boundary 
conditions [33–35]. Herein, we used a LBM 
algorithm [16, 20] for calculating the temperature 
field with conjugate heat transfer in porous 
media, which was validated by comparing the 
numerical results with the existing theoretical 
solutions and experimental data, and adapt it for 
effective thermal conductivity predictions. The 
main idea of this LBM algorithm is introduced 
as follows. 

For heat conduction in porous media with no 
heat source and no phase change, the 
temperature evolution equation for each phase is 
generally written as 

( ) ( ), ,t tg r e t g r tα α αδ δ+ + − ,   

( ) ( )1 , ,eq

n

g r t g r tα ατ
⎡ ⎤= − −⎣ ⎦           (8) 

where the equilibrium distribution of the 
evolution variable, gα, for the two-dimensional 
nine-speed (D2Q9) model, as shown in Fig. 1, is 

0, 0,
/ 6, 1,2,3, 4,
/12, 5,6,7,8,

eqg T
T

α

α
α
α

=⎧
⎪= =⎨
⎪ =⎩

     (9) 

 

 
Fig. 1 Lattice structure of D2Q9 
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          (10) 

and the dimensionless relaxation time 

                         

2

3 0.5
2

n
n

t

k
c

τ
δ

= + ,      (11) 

where the subscript n still represents the nth 
phase, δt the time step, k the thermal 
conductivity, and c the lattice speed defined as δx 
/ δt, whose value can take any positive value 
theoretically only to insure τ values within (0.5, 
2) [31]. The temperature and the heat flux are then 
calculated by 

T gα
α

=∑ ,         (12) 

0.5n

n

q e gα α
α

τ
τ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
∑ .      (13) 

For the isothermal boundary treatment, the 
bounce-back rule of the non-equilibrium 
distribution proposed by Zou and He [37] is used: 

( )eq eqg g g gα α β β− = − − ,      (14) 

where the subscripts α and β represent two 
opposite directions respectively, and the 
equilibrium distribution can be calculated using 
the local boundary temperatures. 

For the insulated boundary, a specular 
reflection boundary condition is implemented 

g gα γ= ,                (15) 

where the subscripts α and γ represent two 
directions satisfying specular reflection 
condition.  
   After the temperature field T and q are 
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obtained by either theoretical or numerical 
calculation, the system ETC, keff, can finally be 
determined as 

eff

L qdA
k

T dA
=
Δ
∫
∫

,              (16) 

where q is the steady heat flux through the 
media cross-section area dA between the 
temperature difference ∆T over a distance L. 
Meanwhile, the total and nondimensional 
entransy dissipation rate during heat conduction 
process can be obtained by using equation (5) 
and (7), respectively. 
 
4 Results and Discussion 
 
4.1 Parallel and series models 
 

Since both the parallel mode and the series 
mode, as shown Fig.2, can be regarded as two 
basic structures of two-phase media, the 
irreversibility of heat conduction in these two 
simple porous media are first analyzed, and then 
the relation between the ETC and NER is 
discussed. 

Assuming the thermal conductivities of each 
component are k1 and k2 (k1 < k2), respectively, 
the temperature difference and the distance 
between the hot end and the cold end are ΔT and 
L, respectively, the volume of the heat 
conduction domain is V0, the simple theoretical 
solutions give the effective thermal 
conductivities ETC as (k1 + k2)/2 for the parallel 
mode and 1/(1/2k1 + 1/2k2) for the series mode.. 

Meanwhile, by selecting k1 as the reference 
heat conductivity, the nondimensional entransy 
dissipation rate NER for the parallel mode and 
the series mode are (k1 + k2)/2k1 and 1/(1/2 + 
k1/2k2), i.e., both 1/k1 timing its corresponding 
ETC. This result illustrates that the ETC not 
only influences the rate of heat transfer in a 
porous medium for given boundary conditions, 
but proportionates to the NER, i.e. the reduction 
of the heat transfer capacity of the medium 
during the heat conduction process. That is to 
say, ETC reflects the irreversibility when heat 
transfers through the porous media, just as the 
viscosity reflects the irreversibility when the 

fluid flows.   

 
(a) Parallel mode 

 

 
(b) Series mode 

Fig. 2 Two basic structures of porous media 
 
4.2 Regular Pore/particle distribution 
 

Several researchers have reported that 
decreasing the average pore/particle sizes 
increases the effective thermal conductivities of 
porous media for given components and 
porosities of the media utilizing the 
experimental [38-39] or/and numerical [16] methods, 
which is an important phenomenon for porous 
media designs, yet still poorly understood.  

In this section, the pore/particle size effect to 
the ETC of porous media are discussed based on 
the concept of entransy dissipation. Consider a 
2-D heat conduction structure as shown in Fig. 3. 
The square heat conduction domain is divided 
into 2n×2n parts symmetrically (n = 1, 2, 3, ••• ). 
Two components with the thermal conductivities 
of k1 = 1 W/mK and k2 = 100 W/mK placed in 
every two separate parts, respectively, and the 
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volume fraction of each component is 0.5. The 
top and bottom boundaries are isothermal with 
the nondimensional temperatures of 1 and 0, 
respectively, while the left and right boundaries 
are insulated. 

 

 
(a) n=1 

 
(b) n = 2 

 
Fig. 3 Porous media with uniform particle 
distribution 
 

The predicted ETCs and NERs for different 
values of n are shown in Fig. 4, indicating that 
both ETC and NER increase with the value of n. 
Since the particle volume is inversely 
proportional to the value of n, the result means 
that both the ETC and the NER of porous media 
during a heat conduction process decrease 

monotonically with the particle average size.  
From the values of NER, it is concluded that a 
larger n value leads to a greater ETC and as n 
changes, the range for 1/(1/2k1 + 1/2k2) < ETC  
< (k1 + k2)/2. 
 

 
Fig. 4 ETC and NER versus value of n 

 
In order to further explore the phenomenon, 

Fig.5 shows the temperature contours in the 
media for the structures of n = 1, 2 and 25. As 
shown in Fig. 5(a), the magnitude of the 
temperature gradient in most of the heat 
conduction domain is relatively small, while it is 
quite large near the common contact point, or 
the center, of each block formed by the 
neighboring four particles, resulting in a large 
heat flux in this point. That is to say, the area 
nearby the contact point is a heat bridge in the 
entire heat conduction domain. Based on the 
conventional heat transfer enhancement 
viewpoint, increasing the heat bridges (contact 
points) may effectively enhance heat transfer. As 
shown in Fig. 3(b), there are nine heat bridges 
(contact points), where the magnitude of the 
temperature gradient is smaller compared to the 
result of n =1 as shown in Figs. 5(a) and (b), 
thus the thermal resistance deceased or the ETC 
of porous media increased. By continuing to 
increase the heat bridges with increasing the 
value of n, the temperature gradient near the 
contact points further decreased or the ETC 
significantly increased. As shown in Fig. 5(c), 
when the value of n is 25, the temperature 
contours is relative smooth, close to those in 
homogeneous materials with the smallest 
temperature gradient. For this case, it seems as 
there exists a heat bridge network in the heat 
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conduction domain. Thus, compared to the 
structure of n = 1, the ETC increased by 90% 
when n = 25. 

 

 
(a) n = 1 

 

 
(b) n = 2 

 
(c) n = 25 

Fig. 5 Temperature contours for different values 
of n 
 

Furthermore, in order to find out the essential 
reason why decreasing the particle size may 
increase the ETC of porous media, Figs.6(a) and 
6(b) show the local NER contours in the porous 
media for the structures of n = 1 and 2, 
respectively.  The greater the temperature 
gradient near the contact point, the larger the 
local entransy dissipation at this point than those 
in the other areas. Comparing Figs. 6(a) and 6(b), 
we found that increasing the contact point may 
decrease the local entransy dissipation nearby 
the contact point, which in turn increases the 
uniformity of the local entransy dissipation in 
the entire heat conduction area. For prescribed 
temperature boundary conditions, the integral of 
the local temperature gradient along the heat 
flow direction is constant, equaling to the 
temperature difference between the hot end and 
the cold end. Meanwhile, the total entransy 
dissipation rate is the integral of the local 
entransy dissipation rate, which is proportional 
to the square of the magnitude of local 
temperature gradient. Thus a uniform local 
temperature gradient along the heat flow 
direction will result in a uniform local NER 
distribution, consequently a large total NER or 
ETC of the media. 
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(a) n = 1 

 
(b) n = 2 

Fig. 6 Local entransy dissipation rate contours 
for different values of n 

 
4.3 Random Pore/particle distribution  
 

In practical application, it is nearly impossible 
to distribute the pore/particle uniformly with the 
same size, shape and orientation. Therefore, it is 
necessary to validate the relation between the 
NER and ETC in the porous media with random 
pore/particle distribution. 

Herein, the QSGS method, proposed by 
Wang et al. [16], was utilized to generate the 
random microstructure of porous media. The 
average pore/particle size was determined by the 
values of core distribution possibility, cd. A 
greater value of cd leads to a smaller average size 
of pores/particles for a certain porosity ε. Fig. 7 
demonstrates two thus generated structures with 
the volume fraction of each component ε = 0.5, 
where (a) has a hundred times higher cd value 
than (b), leading to a much smaller average 
particle size. 
 

 
(a) cd = 0.3 ε 

 
(b) cd = 0.003 ε 

 
Fig. 7 Structures for different values of cd at a 
same porosity ε = 0.5. The dark is component 1 
with k1 = 1 W/mK and the white is component 2 
with k2 = 100 W/mK 
 

After the porous structures are generated for 
different values of cd, the relation between the 
ETC of porous media and the NER during heat 
conduction processes with various particle sizes 
is investigated. The thermal conductivities of the 
components are also 1 W/mK and 100 W/mK, 
respectively. The predicted ETCs and NERs for 
different values of cd are shown in Fig. 8, which 
indicates that the values of both ETC and NER 
increase with the core distribution possibility, cd, 
i.e., both the ETC of porous media and the NER 
during heat conduction process decrease 
monotonically with the particle average size. 
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Fig. 8 ETC and NER versus value of cd at ε = 
0.5 
 
5 Conclusions 
 

By analyzing the irreversibility of heat 
conduction in porous media and its relation to 
effective thermal conductivities, a 
nondimensional entransy dissipation rate (NER) 
has been developed in this study as an objective 
function in optimizing the thermal behaviors of a 
complex medium, or designing a material 
system with desired thermal performance for a 
given condition. Next different porous structures 
were generated, and the temperature fields in 
these structures were obtained, and finally both 
NER during heat conduction processes and the 
ETC of porous media were calculated.  In other 
words, NER describes the efficiency of a 
thermal conduction process in a material, 
whereas ETC reflect the material resistance to 
thermal transfer. 

Meanwhile, decreasing the particle size may 
increase the contact points, i.e. the heat bridges, 
decrease the temperature gradient nearby the 
contact points, and significantly increase the 
effective thermal conductivities of porous media. 
Essentially, for porous media with either 
uniform or random particle distribution, 
decreasing the particle size will result in a more 
uniform distribution of temperature gradient and 
local entransy dissipation rate along the heat 
flow direction, consequently lead to a large 
effective thermal conductivity. 
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