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Down is a layer of undercoat growing on the cuticular of
fowl, such as geese, ducks and swans, etc. Goose down and
duck down are thereinto the most usual down, which and
very soft and fine in nature. For a long time, down has been
used as the best filler material for bedding and outerwear,
able to withstand cold climates because of its superior ther-
mal insulating properties. The investigation of the configu-
ration characteristics and thermal insulation mechanisms
of down and down assemblies have never stopped, and
there are several publications [1–4] on the morphology and
structure, as well as physico-chemical properties, of down.
However, using mathematical methods and fractal theory
to characterize down structure and further to explain heat
transfer problems in single down and down assemblies has
never been attempted up to now.

In this paper, we attempt to describe the configuration
characteristics of goose down quantitatively using tools
from fractal geometry and local fractal dimensions, as well
as pioneering research on the heat transfer problems and
thermal insulation properties of down and down assem-
blies. Before presenting the structure analysis, a general

background of fractal geometry and the essential concepts
of the “local fractal dimension” are briefly reviewed in the
following section.1

Fractal Geometry and Local Fractal 
Dimension

Fractal geometry is a new subject that has developed quickly
over recent years, which reveals the unifications between
in-order and out-of-order, and determinability and rando-
micity. Fractal structures have aroused a great deal of inter-
est in various fields [5–8].

First, there are great differences between conventional
Euclidean geometry and fractal geometry. Euclidean geom-
etry describes regular objects such as points, curves, sur-

Abstract Goose down has superior thermal insu-
lating properties as a filler material used widely as
an insulator in textile products. Its particular
“tree” structure is expected to attribute greatly to
this insulating property. In this paper, fractal
structures of the down “tree” are observed using
scanning electron microscopy (SEM), and the con-
figuration characteristics of goose down are
described quantitatively by local fractal dimen-
sions. From two expects, the local fractal dimen-
sions were calculated both theoretically and
experimentally, revealing its value to be very close
to the golden mean, 1.618. This near-optimal frac-
tal dimension may be attributable to the excellent
thermal insulation of goose down assembly, and
the potential applications of such a fractal struc-
ture are also discussed.
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faces and cubes using integer dimensions 0, 1, 2 and 3,
respectively. However, most of the objects in nature, such
as the surfaces of mountains, coastlines, the microstructure
of metals, etc., are not Euclidean objects. Such objects are
called fractals, and are described by a non-integral dimen-
sion called the fractal dimension [9].

For example, if one were to measure the length of a
coastline, the length would depend on the size of the meas-
uring stick used. Decreasing the length of the measuring
stick leads to a better resolution of the convolutions of the
coastline, and as the length of the stick approaches zero,
the coastline’s length tends to infinity. This is the fractal
nature of the coastline. Since a coastline is so convoluted,
it tends to fill space, and its fractal dimension lies some-
where between that of a line (which has a value 1) and a
plane (which has a value 2).

The measure of a fractal object N(L) (namely length,
area or volume) is governed by a scaling relationship of the
form

N(L) ~ L d
f
 (1)

where the “~” should be read as “scales as” and df is the
fractal dimension of the object. As an illustration of the
above relationship, consider the microstructure of a metal
showing grains of various shapes and sizes. This is a fractal
object in a two-dimensional plane. It is observed that the
average area, N(L), of the grains within squares of differ-
ent sizes L × L (defined as the arithmetic mean of only
those samples for which the center of the square falls on
the grain) scales with the length, L, over a range of lengths,
as per the above relationship [10]. The fractal dimension,
df, calculated as the slope of a log–log plot of N(L) against
L, lies in the range 1< df <2. Alternatively, the microstruc-
ture can be described in terms of two linear fractal dimen-
sions, each having a value between 0 and 1, along mutually
perpendicular directions. The linear fractal dimensions are
obtained from a scaling relationship as in equation (1),
where N(L) denotes the average total length of the inter-
cepts between a measuring line of size L, and the micro-
structure.

Associated with equation (1) is the property of self-sim-
ilarity, which implies that the df calculated from the rela-
tionship in equation (1) remains constant over a range of
length scales, L. Exact fractals such as the Sierpinsky gas-
ket, Koch curve, etc., exhibit self-similarity over an infinite
range of length scales [9]. In actual applications, self-simi-
larity in a global sense is seldom observed, and the “fractal”
description is usually based on a statistical self-similarity,
which the objects exhibit in some average sense, over a cer-
tain local range of the length scale L, which is of relevance
to the problem [11–13]. The fractal dimension calculated
based on the local, statistical self-similarity is termed the
local fractal dimension to distinguish it from the term frac-
tal dimension, which implies global self-similarity at all

length scales. The fractal dimensions (local or global) of
statistical fractals are usually estimated in the same man-
ner as in the illustration of the microstructure, using a scal-
ing relationship between N(L) and L of the form in
equation (1) (see [11]).

The concept of local, statistical self-similarity has been
used in many applications ranging from the characteriza-
tion of the microstructure of materials [10] to the analysis
of speech waveforms and signals [13, 14]. For example, in
the area of speech recognition in a speech reside in the
region of short time scales. While the term local fractal
dimension is used by some investigators [14], others refer
to it simply as the fractal dimension [10]. We adopt the
term local fractal dimension for the analysis of the configu-
ration characteristics of goose down fiber in this paper.

Local Fractal Description of Goose 
Down

Figure 1(a) shows the common soft and fine characteristics
of down. However, when magnified using scanning electron
microscopy (SEM), down is revealed to be a large tree shape.
The whole down consists of a short central nucleus from
which a number of branches diverge at a wide range of ori-
entations (Figure 1(b)). Compared with the down branch,
the down nucleus is very small and could be considered as a
dot in the macroscopical picture. On some main branches,
analogous secondary branches will shoot out, and keep the
same structures as the main branches (Figure 1(c)). In turn,
each branch also carries a large number of fibrils, all of
which diverge from the branches at about 30° to 90° (Fig-
ure 1(d)). The down branches and down fibrils constitute
the main body of down. Finally many little triangle nodes
and crotches diverge from the fibrils to hold in place a sin-
gle crossing fibril (Figure 1(e)).

Thus, we can see that the SEM images of goose down
exhibit an evident “self-similarity” between the parts of
goose down fibers and the whole, and this kind of “self-
similarity” is not in a global sense, but based on a statistical
self-similarity only in some average sense, over a certain
local range of the length scale L. Magnifying or reducing
the figures, the configuration characteristics remain statis-
tically fixed. Thus, it is proved that the goose down has an
evident local “fractal tree” structure.

Evaluation of df of Goose Down

Computer Simulation Prediction of df
In simulating the morphologic structure and structural
parameters of the goose down [15], computer-generated
fractal graphics were created using the Basal generating
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unit in Figure 2(a) for three hierarchical levels shown in
Figure 2(b). According to the concept of fractal dimension
in a global sense, the unit consists of 10 similar to a quarter
of the whole, so the fractal dimension of goose down can
be calculated using

(2)

Actual Evaluation of df Based on a “Sandbox” 
Method
In order to evaluate the actual “local fractal dimensions”
of goose down [16], we first need to select a representative

image of down and then deal with the image to adapt the
computer calculation programs.

We selected the image shown in Figure 3 as the initial
structural unit for analysis. To obtain the best imaging
process effect, we need to determine a critical pixel level
pcr, which will enable us to differentiate the actual struc-
tural information from the background noise. In other
words the critical pixels level pcr ensures a close rendering
of the actual picture into a computer image with the least
distortion. It is a monochromic case so that we use the gray
level to regenerate the image. By choosing the background
as total black and the goose down as total white, Figure 4
provides the information between the pixels numbers ver-
sus the gray levels from the initial image. It is not difficult

Figure 1 Local, statistical self-
similarity of goose down fiber. (a)
Individual down cluster. (b) Down
branches diverging from down
nucleus in down cluster. (c) Sec-
ondary branch diverging from main
branch. (d) Down fibrils diverging
from down branch. (e) Crotch nodes
on down fibril. The magnifications
of (a), (b), (c), (d), and (e) are 1, 120,
20, 100, 950 times, respectively.

Figure 2 The basal generating unit
(a). Computer generated fractal
graphics at three levels of hierar-
chic iterations (b).

df
N L( )ln

Lln
------------------- 10ln

4ln
----------- 1.66= = =

 at UNIV CALIFORNIA DAVIS on November 22, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com


Explanation of the Fractal Characteristics of Goose Down Configurations  J. Gao and N. Pan 1145 TRJ

to discern that from the left to the right of the figure, as the
gray level changes from darker to whiter, the correspond-
ing pixel number is reduced. It is at the pixel number p =
117 where the profile shows a turning point; that is, by

choosing pcr = 117, the contrast between the image and
background is at its highest.

Then by using a two-value algorithm based on the
threshold pcr = 117, we can turn all of the pixel values into
a binary system of black and white:

, gray level = 1, black

, gray level = 0, white

A goose down image thus enhanced is shown in Fig-
ure 4.

To measure the local fractal dimension of Figure 5, we
adopt the Sandbox methods of fractal theory, proposed by
Stanley et al. in 1985 [15].

First, we need to identify the appropriate range of
length scales L. Since we are interested even in the finest
of fibrils or nodes on the down, clearly the length scale L
should be the finest fiber diameter or even smaller than
that. For various areas (black or white), calculate the
square box numbers N(L) at a corresponding given size L.
Then the slope of a log–log plot of N(L) against L will be
defined as the fractal dimension value df of the goose down
fibers.

As a demonstration, we show how this calculation is
conducted using Figure 5. Select the finest branch diame-
ter of the goose down as the basic unit of the measure scale
l, and the side length of this figure as l′, so

Figure 3 Initial structural unit image.

Figure 4 Selection of the critical pixels.

p pcr≥

p pcr<

Figure 5 The picture after binary processing.
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(3)

Using an area calculating procedure and noting that
there are a total of 255 pixels for each side, we can obtain
the areas occupied by white pixels and black pixels, respec-
tively. The total white pixel occupancy is 24.55%, so

that is

(4)

Thus, the fractal dimension is

(5)

By assigning different L values and calculating the rele-
vant N(L) values, we can plot a log–log curve as in Figure 6.
The curve of the double logarithm has shown remarkable
linearity, and the linearity correlation coefficient achieves
0.99, clearly revealing the prominent fractal characteristics
of the goose down fibers. Thus the fractal dimension df of
the system can be derived through equation (2).

Since this is an experimental approach with inevitable
statistical error, at different measure scales, the respective
fractal dimension df will be slightly different. A statistical
estimate based on adequate data can lead to a more accu-
rate value of df.

It is both surprising and understandable that after many
generations of evolution, goose down has acquired such an

interesting fractal dimensional structure. The fractal dimen-
sion of the goose down fiber is calculated as 1.66 by compu-
ter simulations and 1.704 by actual measurement of
Sandbox methods, close to the golden mean, 1.618, which
assuredly reveals certain structural optimality in goose
down. In the known research of the mathematical aspects,
Iovane [8] showed the importance of the golden mean with
respect to the large-scale structures in our universe; Weiss
[16] illustrated that the principle of information coding by
the brain seems to be based on the golden mean. Kesha-
varzi et al. [17] found that the fractal dimension of turbu-
lence is relative to 1.618; He [18] applied the golden mean
to biomechanics. The main application of golden mean in
E-infinity theory [19, 20] shows miraculous exactness com-
pared with experimental measurement, especially in deter-
mining the theoretical coupling constants and the mass
spectrum of the standard model of elementary particles. A
new mathematical direction called harmony mathematics
based on the golden mean has also been systematically
established. So we can be sure of the significance of the
value of df for the survival of geese is quite self-explana-
tory, and the optimal structure characteristics of single
down fibers contribute to the thermal insulation of assem-
blies.

Conclusions

Using fractal methods, studies of the morphological
structure of goose down have shown that down fibers
have typical local fractal “tree” structures. The many dif-
ferent grades divaricators in goose down have obvious
local, statistical self-similarity with both each other and the
whole.

The fractal dimension df is calculated as 1.66 by compu-
ter simulation and 1.704 by actual measurement of using a
“Sandbox” method, a value close to the golden mean,
1.618, confirming the inherent optimal structure of goose
down. What is more, in the two-dimensional plane, when 1
< df < 2, it can be assumed that the curve has infinite
length as well as a very limited area. As df approaches two,
the fibers tend to occupy more “space” and limited auto-
volume. So the specific areas of fibers become larger and
larger, and the fibers dichotomous structures become
increasingly evident. According to theory of fluid mechan-
ics, system permeability is in inverse proportion to the
square of medium specific areas. Thus, it can be seen that
airflow circulation resistance will grow remarkably with the
increasing of fiber-specific area. All of these factors make
down fiber assembly retain a mass of immobile air and thus
keep superior thermal insulating properties. The further
mechanisms associated with this, however, are still under
investigation in our ongoing research.

L l′
l
--- 230

2
--------- 115= = =

100%: l′
2

l2
----- 24.55%:N=

N 0.2455 2302 22⁄× 3246.7375= =

df
Nln
Lln

---------- 3246.7375ln
115ln

------------------------------- 1.704= = =

Figure 6 Log-log plot of N(L) against L.
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