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Abstract

A theoretical model of the capstan problem including the extensibility and the Poisson’s ratio of the rod is established in this study.

Several cases were examined to investigate the effects of important parameters on the tension transmission efficiency. As a result, the rod

extensibility turned out to enhance the tension ratio, competing with the effects of rod bending rigidity and the frictional behaviors of the

system. In case of no frictional modification (n ¼ 1, the simple Amonton’s law), larger initial strain renders greater tension ratio. This

effect becomes more remarkable at high radius ratio. However, the effect of the modified frictional law may oppress the effect of rod

extensibility if the initial tension T0 grows larger. The effect of Poisson’s ratio also tends to increase the tension ratio. But the amount was

almost negligible since the maximum decrease was at most 7.8%. We also calculated the average strain throughout the rod by solving the

governing equation and iterating the value of lavg. Calculated strain throughout the rod was up to 2.6 times larger than initial strain. But

this contribution leaded to at most 1.078 times larger radius ratio than the initial rod radius. Thus, it is well enough to consider only the

extensibility effect on the increase of the tension ratio. We also presented several prerequisites to establish the model. Three major

concerns about this model were introduced and clarified.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A tensioned rod, rope, fiber, or film wound over a
circular shaped body is frequently seen in many mechanical
set ups and applications. A well-known and widely used
relationship is the so-called capstan equation [1], or Euler’s
equation of tension transmission. In general, the word
‘‘capstan’’ has the following common meanings: a rotating
machine which is used to control ropes that are wound
around it and used to pull/release a ship, or a rotating
spindle used to move recording tape through the mechan-
ism of a tape recorder. But the usage of the term ‘‘capstan
equation’’ is not confined within the above two cases. In
pure mechanical viewpoint, a capstan is a typical example
of the physical equilibrium accompanying friction between
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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rope or film-like solid and circular shaped body. So the
capstan equation is widely used to analyze the mechanical
behavior of the film/rope-like solid in contact with circular
profiled surface. Rope rescue system [2,3] is a good
example for applying capstan equation to their mechanical
analysis. In textile area, capstan equation has been a basic
equation to analyze its process. Several papers [4–8] using
the capstan equation were introduced in tribological area.
Although they are significant contributions up to nowa-

days, all these papers are based on so called ‘‘classical
capstan equation’’ and it should be noted that the
modification of capstan equation itself is seldom intro-
duced nor applied in the area of tribology. While it is
commonly introduced and derived to help understand the
mathematical procedure in all the previously refered
papers, the classical capstan equation is the most simplified
relationship one can derive between the incoming and
outgoing tensions in the rods because it is based on the
force equilibrium under such ideal condition as complete
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Nomenclature

r1 radius of the rod before extension
r1
0 radius of the rod after extension

r2 radius of the circular shaped body
R total radius, r1+r2
r the radius ratio between rod and body, r2/r1
j contact angle from the start point to arbitrary

point before extension
j0 contact angle from the start point to arbitrary

point after extension
o0 inclined angle of incoming tension T0

o1 inclined angle of outgoing tension T1

y total contact angle

e normal strain of the infinitesimal element of the
rod

n Poisson’s ratio of the rod
T tension force
T0 incoming/initial tension force
T1 outgoing/result tension force
tA apparent tension ratio between T1 and T0

tC actual tension ratio, T(y)/T(0)
Q shear force
N normal force
Fm frictional force
M bending moment
E Young’s modulus of the rod
A cross-sectional area of the rod
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close contact with no extension, flexible rod with no
bending rigidity, and no frictional modification. Therefore
many engineers have found that this classical capstan

equation does not hold well for actual cases—some
attempts have been made to compensate these short-
comings: Taking the bending rigidity into account
[9,13–16] is the first act, whereas taking the nonlinear
frictional relationship into account [11,12,16] is another
one. Since the bending rigidity of the rod considered means
the resistance of the rod to be bent around the drum,
exerted tension is less transmitted in the presence of rod
bending rigidity. In addition, the rod rigidity renders the
direction of the exerted tension to be inclined inside the
drum. Meanwhile, the nonlinear frictional behavior con-
sidered expresses the formula of the frictional law as
power–law relationship, not linear one. Since the exponent
in the formula is less than unity, it reflects the decrease of
the frictional coefficient with the increase of the exerted
tension.

As the most recent summary and revision of the previous
attempts resolving all the previous shortcoming including
Howell’s contradiction (see Ref. [16]), Jung et al. [16]
combined these two major corrections into one, and
concluded that both factors tend to decrease the tension
transmission ratio—the nonlinear frictional behavior is
much more dominant than the bending rigidity. However,
the initial tension should be sufficiently large so that this
tension ratio decrease may actually appear.

Another important factors, but never considered before,
are the extensibility and Poisson’s ratio of the rod due to
tension. Their effects can be very important in flexible rod
such as wires or ropes. It should be noted that no published
work has been made available to deal with both the
extensibility and the Poisson’s effects of the rod, let alone
to combine them with the bending rigidity and power–law
friction into a complete capstan problem solution. In most
related reports, the elongation and the associated lateral
contraction of the tension member were simply ignored,
which in many cases, turned out to be significant
negligence. Therefore, the purpose of this research is to
establish a more generalized theory including such factors
as extension and Poisson’s ratio, in addition to the bending
rigidity and power–law friction, so as to examine the extent
of their influences. This work will be also useful to those
who are to identify which is positive and which is not
among the following factors: the extension of the rod and
the decrease in the diameter due to the applied tension
versus the rod bending rigidity and nonlinear frictional
behavior.

2. Theoretical approach

2.1. Prerequisites before deriving governing equation

2.1.1. Direction of frictional force and contact angle

measurement

Before deriving the governing equation, there exist some
prerequisites we must clarify. First assigning the incoming
and outgoing tensions in a rod as T0 or T1—Fig. 1 shows
the typical situation of the bent elastic rod in contact with
the capstan.
Because of the rod bending rigidity, the tension T0 or T1

at the both ends of the rod are no longer in the tangent
direction: it splits into two components, the normal force
Q(y) bending the rod to maintain the contact with the
capstan and the tangent force T(y) pulling the rod. There
exist tangential and normal components of the incoming
tension as:

T2
1 ¼ TðyÞ2 þQðyÞ2; TðyÞ ¼ T1 cos o1; QðyÞ ¼ T1 sin o1

Similarly at the other end, there exist tangential and
normal components of the outgoing tension as

T2
0 ¼ Tð0Þ2 þQð0Þ2; Tð0Þ ¼ T0 cos o0; Qð0Þ ¼ T0 sin o0

An interesting feature in the above figure is that there is
no definite answer which is bigger between T(0) and T(y).
The key lies in the directions of the frictional force. If the
frictional force goes toward T(0), T(y) is larger than T(0).
And consequently the contact angle is measured counter
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θ

Fig. 1. Typical situation of bent elastic rod in contact with circular body.
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clockwise: starting as zero from T ¼ T0 coso0 to y at
T ¼ T1 coso1.

Otherwise, the reverse is true and the contact angle is
measured clockwise. This feature should be considered
during drawing the free body diagram. Another interesting
but confusable issue is that there exist two opposite ways of
measuring the contact angle—clockwise and counter
clockwise directions. According to the clockwise measure-
ment, the contact angle is put as zero at T ¼ T0 coso0, and
as y at T ¼ T1 coso1 while it is put as zero at
T ¼ T1 coso1, and y at T ¼ T0 coso0 according to the
counter clockwise measurement. Figs. 2a and b illustrate
the situations. In these figures, j and g denotes the
intermediate contact angle measured clockwise and counter
clockwise. Apparently, the following relationships are
satisfied:

jþ x ¼ y; dj ¼ �dx; TðjÞ$Tðy� xÞ (1.1)

Note that by using Eq. (1.1), the tension with counter
clockwise measurement can be transformed into the
tension with clockwise one. Here are two examples of
transformation.

In case of an inextensible funicular rod, the above
equation leads to the following well-known classical
capstan equation:

TðjÞ ¼ T0 e
mj; TðgÞ ¼ T1 e

�mg, (1.2)

Tðy� gÞ ¼ T1 e
�mðy�gÞ ¼ T1 e

�my emg, (1.3)
‘T1 ¼ T0 e
my.

In the existence of rod rigidity, it leads to the following:

TðjÞ ¼ C1 e
aj þ C2 e

bj; TðgÞ ¼ C01 e
�ag þ C02 e

�bg, (1.4)

Tðy� gÞ ¼ C01 e
�aðy�gÞ þ C02 e

�bðy�gÞ ¼ C01 e
�ay eag þ C02 e

�by ebg,

(1.5)

‘C01 ¼ C1 e
ay; C02 ¼ C2 e

by,

where a and b are appropriate constants depending on the
frictional coefficient and the radii of rod and contact body.
From now on we only use the clockwise measurement of
the contact angle so that T(y) ¼ T1 coso1 is always greater
than T(0) ¼ T0 coso0.

2.1.2. Initial and boundary conditions

Next, it is necessary to find and clarify the initial and
boundary conditions. From Fig. 1, it is clear that

Tð0Þ ¼ T0 cos o0; Qð0Þ ¼ T0 sin o0,

T0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTð0Þg2 þ fQð0Þg2

q
ð1:6Þ

T1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðyÞg2 þ fQðyÞg2

q
; tan o1 ¼

QðyÞ
TðyÞ

. (1.7)

Apparently, the inclined angle o0 and o1 will be zero in
case of no bending rigidity. On the other hand, these angles
are essential for a rod with bending rigidity to make an
equilibrium shape [5]. In other words, the existence of rod
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Fig. 2. Two possible ways counting the contact angle—(a) the whole contact region, (b) on the free body diagram.
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rigidity affects both the shape of the rod in the deflected
region and the actual tension ratio T(y)/T(0) in the contact
region.
dN

dFμ

A

Q+dQ

 
T+dT

M

M+dM

ϕ'd+ ϕ'

ϕ'

θ

O

r2

d ϕ'/2
r1'

contact ends

2

Fig. 3. The free body diagram of the infinitesimal element of extended rod

in equilibrium of force and moment and its boundary at the circular

contact region.
2.1.3. Expression of tension ratio

As mentioned above, the apparent tension ratio T1/T0

becomes different from the actual tension ratio T(y)/T(0)
because of the existence of inclined angle of load o0 and
o1. To distinguish them from each other, we define two
different tension ratios—apparent tension ratio (tA), and
actual tension ratio (tC), respectively, as

tA ¼
T1

T0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðyÞg2 þ fQðyÞg2

fTð0Þg2 þ fQð0Þg2

s
; tC ¼

TðyÞ
Tð0Þ

, (1.8)

From the above equation, one can see that the apparent
tension ratio reflects the effect of shear forces Q(0) and
Q(y) as well. Only in case of inextensible funicular rod—no
shear force, no bending moment—will the apparent tension
ratio become equal to the actual ratio. If a rod has bending
rigidity, there will be shear force and the inclined angles o0

and o1.
2.2. Derivation of governing equations upon rod extension

Fig. 3 shows the free body diagram of a rod wound over
a capstan. It also shows how the extension of the neutral
line renders the infinitesimal length of the rod to increase
from dl to dl0. Manipulating it mathematically leads to the
following relationship:

dl0 ¼ ð1þ �Þdl, (2.1)

dl ¼ ðr1 þ r2Þdj; dl0 ¼ ðr01 þ r2Þdj0 (2.2)
where all the primes indicate the parameters after exten-
sion. Here, we define the normal strain, e, as

� ¼
T cosðdj=2Þ �Q sinðdj=2Þ þ dFm

EA
�

T � ðQ=2Þdjþ dFm

EA
,

(2.3)

2.2.1. Normal strain and radius of the rod in contact region

upon extension

Fig. 3 presents the free body diagram of the infinitesimal
element of extended rod in equilibrium of force and
moment and its boundary at the circular contact region.
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2.2.2. Poisson’s effect

In the present work, we assume uniform Poisson’s
effect—uniform radius of the rod after extension. Thus,
the radius of the rod after extension becomes

r01 ¼ r1ð1� n�̂Þ; �̂ ¼ l�0; �0 ¼
T0

EA
, (2.4)

where e0 is the initial strain, and �̂ is the effective or average
strain throughout the whole range of contact. So the key to
include the Poisson’s effect in the model lies in the
determination of the parameter l connecting the initial
and effective strains. If we assume that the Poisson effect
depends upon the inclined angle and the incoming strain,
we can have l ¼ coso0 as the simplest choice. This value is
equivalent to the strain at T(0) ¼ T0 coso0. This choice
actually represents the minimum Poisson effect.

The second but more reasonable choice is to guess the
effect acts on the rod constantly with the amount of
average strain throughout the rod. According to this
choice, the expression of the parameter l leads to the
following:

�̂ ¼

R y
0 �djR y
0 dj

¼
1

y

Z y

0

T

EA
dj ¼

�0
y

Z y

0

T dj (2.5)

‘l ¼
1

y

Z y

0

T dj; T ¼
T

T0
(2.6)

where T̄ is the normalized tension. Existing difficulty in
using the above relationship is that we need to solve the
derived governing equation prior to determining the value
of l. Since l is involved with T̄ in Eq. (2.6), we should
guess the value of l first and solve the governing equation
to obtain the data of T̄ . Next we should iterate the value of
l until Eq. (2.6) is satisfied. This procedure renders the
derived governing equation to be implicit. In case of large
change of rod radius, the second choice is desired since it is
more realistic. However, it is meaningful to carry out the
modeling according to both the former and latter choice
and figure out how much the error level will be by avoiding
complexity. It helps us find the acceptable range of radius
ratio to adopt the first choice with maintaining the desired
accuracy. Anyway, substituting Eqs. (2.2)–(2.6) into (2.1)
and eliminating all the higher order terms give

dj0 ¼
ð1þ �0TÞðr1 þ r2Þ

fr1ð1� nl�0Þ þ r2g
dj ¼ kð1þ �0TÞdj,

k ¼
1þ r

ð1� nl�0Þ þ r
, ð2:7Þ

where k is a parameter reflecting the extensibility. The
above relationships are used to derive the governing
equation in next session.

2.2.3. Equilibrium equations in the contact region and

frictional properties

From the force balance along the 1, 2 directions and the
moment equilibrium at point ‘‘O’’ in Fig. 3, we can obtain
three following differential equations:

dT þQdj0 � dFm ¼ 0, (2.8)

dQ� T dj0 þ dN ¼ 0, (2.9)

dM �Qðr01 þ r2Þdj0 þ r01 dFm ¼ 0. (2.10)

Also, all the existent contacts are regarded as continuous.
As for frictional properties, the classical Amonton’s law of
friction states that the frictional force Fm is proportional to
the normal force N. However, it is well known that this law
does not hold true in several kinds of materials—especially
in polymeric and textile materials. An improved relation-
ship between the frictional and normal force is the
following:

Fm ¼ aNn; np1 (2.11)

where a and n are material constants. Note that the above
relationship does not contain the radius of the rod or
wheel, while Howell’s notation does. It is very important.
Calculated frictional coefficient should not vary with the
change of the rod/wheel radius.
However, taking Howell’s notation [11,16] renders the

calculated frictional coefficient larger than unity as the
radius of the wheel grows larger (see Ref. [16] for more
detailed explanation). When the value of n goes to unity,
this becomes the classical Amonton’s law. Many polymeric
materials take the value n ¼ 0.67 [11].

2.2.4. Governing equations

Bearing in mind that the rod is an elastic solid (dM ¼ 0),
we can obtain the following equation from Eqs. (2.8)–(2.11):

d2T

dj02
þ

1

n

r
ð1� nl�0Þ

1� nl�0 þ r
ar

� �1=n

� T ð1�nÞ=n dT

dj0
�

r
ð1� nl�0Þ

T ¼ 0 ð2:12Þ

Substituting Eq. (2.8) into (2.13) gives the following:

d2T

dj2
þ

rkðð1� nl�0 þ rÞ=ðarÞÞ1=nT
ð1�nÞ=n
0

nð1� nl�0Þ

� T
ð1�nÞ=n

ð1þ �0TÞ
dT

dj
�

k�0
1þ �0T

dT

dj

� �2

�
rk2ð1þ �0TÞ

2

ð1� nl�0Þ
T ¼ 0 ð2:13Þ

Q ¼
T0ð1� nl�0 þ rÞð1� nl�0Þ

rð1þ rÞð1þ �0TÞ
dT

dj
,

dFm ¼
T0ð1� nl�0 þ rÞ

r
dT ; N ¼

Fm

a

� �1=n

,

M ¼
EI

R
; k ¼

1þ r
1� nl�0 þ r

. ð2:14Þ

Eq. (2.13) together with Eq. (2.14) is the normalized
governing equation for calculating tension ratio with exten-
sion and frictional drop. Note that the initial tension T0 in
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Eq. (2.13) can only be eliminated in case of the classical
Amonton’s law of friction. In other words, the tension ratio
in fact depends upon the initial tension in general. Since the
equation cannot be solved analytically, numerical procedure,
the fourth-order Runge–Kutta method, is chosen here.
Eq. (2.13) can be divided into the following two compatible
first-order ODEs:

dTðjÞ
dj

¼ UðjÞ, (2.15)

dUðjÞ
dj

¼ �
rð1þ rÞðð1� nl�0 þ rÞ=arÞ1=nT

ðð1�nÞ=nÞ
0

nð1� nl�0Þð1� nl�0 þ rÞ

� fTðjÞgðð1�nÞ=nÞf1þ �0TðjÞgUðjÞ

þ
1þ r

1� nl�0 þ r
�0

1þ �0TðjÞ
fUðjÞg2

þ
ð1þ rÞ2

ð1� nl�0 þ rÞ2
rf1þ �0TðjÞg2

ð1� nl�0Þ
TðjÞ. ð2:16Þ

To solve these differential equations, we also need two
equivalent boundary conditions as below:

Tð0Þ ¼ cos o0; Uð0Þ ¼
rð1þ rÞð1þ �0 cos o0Þ

ð1� nl�0 þ rÞð1� nl�0Þ
sin o0.

(2.17)

As mentioned before, the choice of the expression for the
parameter l will be the following:

lmin ¼ cos o0 (2.18a)

lavg ¼
1

y

Z y

0

T dj. (2.18b)

If we choose the expression of the parameter l ¼ lmin,

there is no iteration needed in solving Eqs. (2.15) and (2.16).
All processes will be explicit. On the other hand, we can
estimate the value of l at first and iterate it until Eq. (2.18b) is
satisfied and then we have l ¼ lavg. In case of zero Poisson’s
effect, l vanishes. Specific comparisons between the two
choices will be provided in next section.
3. Results and discussions

In this section, we will calculate the apparent and actual
tension ratios with two major categories: with extensibility
effect only, and with both extensibility and Poison’s effects.
Each category includes the classic and modified frictional
laws cases, respectively. Table 1 provides the materials
properties used in the predictions.
Table 1

Material properties for Case 1

Rod radius,

r1 (mm)

Rod modulus,

E (MPa)

Frictional

factor, a
Power–law

exponent, n

I

a

1.0 10.0 1.0 0.4 1 0.67 2
3.1. Tension ratio with extensibility only

Case 1.1. With extensibility and classic frictional law
(n ¼ 1, a ¼ 0.4) under zero Poisson’s effect (n ¼ 0)�
o0 ¼ 201 with different radius ratios r ¼ 5, and 50 at three
initial strain levels e0 ¼ 0 (no extension), 0.05, 0.1.

The above case is chosen to investigate the effect of
extensibility and rod rigidity only. We calculate the
apparent and actual tension ratios from Eqs. (2.13) and
(2.14) and compare the results with those from the classical
capstan equation as shown in Fig. 4 as against the contact
angle y.
Apparently at a given contact angle, the tension ratio

increases with the increase of the initial strain e0. Another
interesting feature is that the actual tension ratio tC is
always greater than the apparent tension ratio tA. On the
other hand, the tension ratios with zero extension are
smaller than that in case of the classical capstan equation
on the whole due to the effect of rod rigidity, as reported in
our previous work [15]. Smaller radius ratio renders more
tension ratio drop, but the existence of the inclined angle
o0 competes with it.
It is also interesting that the actual tension ratio in

Fig. 4b takes larger value than the classical capstan
equation at first, while it becomes smaller around the
range of yE801. Though not presented, calculated value of
inclined angle o1 rapidly converges to certain level as the
contact angle grows larger, while the effect of rod rigidity
gradually appears as the contact angle grows. Thus, the
effect of inclined angle is more dominant at relatively low
contact angle, while the effect of rod rigidity (or radius
ratio) becomes more dominant at high contact angle. So
the tension ratios show partially greater tendency at initial
small contact angle, especially for the actual tension ratio
tC in Fig. 4b, while this tendency is reversed at high contact
angle.
Fig. 5 shows the same apparent and actual tension ratio

versus contact angle y and the only change is the increase
of radius ratio r from 5 to 50. However, this change alone
is enough to significantly increase the tension ratios
compared with the data in Figs. 4a and b. The effect of
extensibility is so remarkable that even apparent tension
ratios in Fig. 5a are always greater than that by the
classical capstan equation. The maximum increase of the
apparent and actual tension ratio is 40.5% and 49.6%
compared with the data from the classical capstan
equation, respectively.
Another interesting feature is that even the apparent and

actual tension ratios in Figs. 5a and b with no extension are
nclined

ngle, o0 (1)

Poisson’s

ratio, n
Radius

ratio, r
Initial strain,

e0

0 0 0.3 5 50 0 0.05 0.1
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Fig. 5. (a) Comparison of the apparent tension ratio tA versus contact

angle y in case of r ¼ 50 at different initial strains. (b) Comparison of the

actual tension ratio tC versus contact angle y in case of r ¼ 50 at different

initial strains.
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Fig. 4. (a) Comparison of the apparent tension ratio tA versus contact

angle y in case of r ¼ 5 at different initial strains. (b) Comparison of the

actual tension ratio tC versus contact angle y in case of r ¼ 5 at different

initial strains.
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also greater than the tension ratio in the classical capstan
equation. It results from the role of the inclined angle o0

and its existence enhances the tension ratios. It has been
shown in our previous work [15] that the actual and
apparent tension ratio is always smaller than the tension
ratio of the classical capstan equation if o0 ¼ 0. Of course
these increases will be more remarkable if the inclined angle
o0 grows larger. Thus, it can be concluded that the
extensibility of the rod enhances the tension ratio, and this
effect becomes more dominant as the radius ratio or the
inclined angle o0 increases.
Next, we are to investigate the dependence of the tension

ratios on the frictional behaviors. Note that the tension
ratios in this case are affected by the initial tension T0, and
our previous work [16] reported that the increase of the
initial tension T0 decreases the tension ratio due to the
nonlinearity of the frictional law. Since T0 depends upon
the modulus of the rod, it is necessary to compare the
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tension ratio with different choices of E ¼ 1 and 10MPa,
respectively. All the other parameters are the same as:

Case 1.2. Extensibility effect with frictional modification
under zero Poisson’s ratio: �n ¼ 0.67, a ¼ 0.4, n ¼ 0,
o0 ¼ 201, e0 ¼ 0, 0.05, 0.1, E ¼ 1.0, 10MPa, r ¼ 5, 50.

where calculated initial tension T0 ¼ 1.57018, 3.1415N for
E ¼ 10MPa and 0.15708, 0.31415N for E ¼ 1.0MPa,
respectively. So the tension ratios with no extension are
calculated with the same initial tensions.

Figs. 6a and b show the apparent and actual tension
ratios versus contact angle y in case of r ¼ 5, E ¼ 10MPa
at o0 ¼ 0, 0.05, 0.1, compared with the data from the
classical capstan equation. Unlike the previous data, huge
decreases of tension ratios about 40% are observed. The
most distinguished feature from the previous case is that
the tension ratio depends upon the initial tension. Look at
Eq. (2.13). The term T0 survives and affects the calculated
tension ratio. Shown tendency in Fig. 6 tells us that higher
initial tension decreases the tension ratio more, which was
already reported previously [10]. Since the initial tension T0

calculated from the data in Case 1.2 is ‘‘sufficiently large’’
enough to show the effect of this modification, calculated
tension ratios are greatly decreased. Of course the rod
extensibility itself enhances the tension ratio. (Compare
solid and dotted line of the same color with each other.)
But the increase of e0 also caused the increase of the initial
tension, which may oppress the extensibility effect. Thus, it
caused the decrease of the tension ratio. (Compare two
solid lines with each other.)

Figs. 7a and b show the apparent and actual tension
ratios versus contact angle y at r ¼ 5, e0 ¼ 0, 0.05, 0.1,
E ¼ 1.0MPa compared with the classical capstan equation.
Since the initial tension is decreased up to 1/10 level, the
effect of rod rigidity becomes more significant. Thus, the
tension ratios decreased less compared with the data in
Figs. 6a and b. In addition, the effect of rod extensibility
itself is also enhanced with the decrease of the initial
tension. (See the solid and dotted line with the same color.)
Nevertheless, the tension ratios with e0 ¼ 0.1 are still
smaller than those with e0 ¼ 0.05 since the initial tension is
increased from 0.15708 to 0.31415. Of course this feature
comes from the effect of frictional modification, not the
extensibility effect itself.

Fig. 8 shows the apparent and actual tension ratios
versus contact angle y in case of r ¼ 50 relative to the
classical capstan equation. Since the radius ratio is
increased by 10 times, the extensibility effect becomes
much more significant, while the effect of frictional
nonlinearity still be the same and the effect of rod rigidity
grows smaller. Thus, the tension ratios with e0 ¼ 0.05
exceed the tension ratio from the classical capstan
equations, while the ratios with e0 ¼ 0.1 still show smaller
tendencies.

In summary, the rod extensibility enhances the tension
ratio by competing with the reversing effects of rod rigidity
and frictional nonlinearity. For linear friction (n ¼ 1),
larger initial strain renders more increase of the tension
ratio. This effect becomes more remarkable at high radius
ratio. However, the effect of the frictional nonlinearity
oppresses the effect of rod extensibility if the initial tension
T0 grows larger. In case of frictional nonlinearity
(n ¼ 0.67), tension ratio with e0 ¼ 0.1 is smaller than that
with e0 ¼ 0.05. This tendency looks opposite to the case of
linear friction, and it is caused by the initial tension, not by
the rod extensibility since the initial tension is increasing
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with the increase of the initial strain. Therefore, more
flexible rod with larger radius of contact wheel enhances
the tension ratio at the same level of the initial strain.

3.2. Tension ratios with extensibility and Poisson’s effect

In this session, we are to include the Poisson’s effect to
the calculated tension ratios and investigated their changes.
We first calculate lavg/lmin with the help of Eqs. (2.15)–(2.17)
assuming that the Poisson’s ratio is 0.3, as in the most
common elastic solids.

Case 2. n=1, r=5, a=0.4, e0=0.05, 0.1, o0=201, n=0.3.

Fig. 9 shows lavg/lmin versus contact angle y in case of
linear friction (a ¼ 0.4, n ¼ 1), r ¼ 5, 50, e0 ¼ 0.05, 0.1,
o0 ¼ 201 and n ¼ 0.3. Apparently, the average strains are
larger than the initial strain by up to 2.6 times, and this
difference grows larger as the initial strain and/or radius
ratio increases. However, the increase of the tension ratio is
not so large as expected. Fig. 10 shows the apparent
tension ratio versus contact angle y when n ¼ 0 and 0.3,
respectively. The maximum increase of the tension ratios is
less than 5% in both cases. In fact, Poisson’s effect is
equivalent to the decrease of the rod radius. From
Eq. (2.4), we obtain the following expressions of decreased
radius of the rod:

r1 � r01
r1
¼

lavg
lmin

n�0 cos o0. (R-1)

Calculated percentage of the minimum decrease in rod
radius using the above equation is less than 7.3%. It
implies that the increase of the radius is at most 7.8%. This
difference is negligible even in case of r ¼ 5 because the
increased ratio is r ¼ 5.39.
Moreover, our previous work reported that the effect of

radius ratio diminishes at high value. So the effect of
Poisson’s ratio also grows smaller. Thus, it is well enough
to consider the extensibility effect on the increase of the
tension ratio.



ARTICLE IN PRESS

θ θ (°)
0 20 40 60 80 100 120 140 160 180

λ
a
v
g

 / 
λ

m
in

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6 ρ=5 , ε0=0.05

ρ=5 , ε0=0.1

ρ=50, ε0=0.05

ρ=50, ε0=0.1

Fig. 9. lavg/lmin versus contact angle y in case of a ¼ 0.4, n ¼ 1, r ¼ 5, 50,

e0 ¼ 0.05, 0.1, o0 ¼ 201 and n ¼ 0.3.

0 20 40 60 80 100 120 140 160 180

τ C

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n=1, ε0=0.05, ν=0

n=1, ε0=0.05, ν=0.3

n=1, ε0=0.1, ν=0

n=1, ε0=0.1, ν=0.3

θ (°)

Fig. 10. Apparent tension ratio versus contact angle y at n ¼ 0, and 0.3.

J.H. Jung et al. / Tribology International 41 (2008) 524–534 533
In summary, the effect of Poisson’s ratio also increases
the tension ratio. But the amount is almost negligible
since the reduction of the rod radius due to Poisson’s
effect is at most 7.8%. Average strain throughout the rod is
up to 2.6 times larger than the initial strain. But this
contribution leads to at most 1.078 times larger radius ratio
than the initial rod radius. Thus, it is well enough to
consider the extensibility effect on the increase of the
tension ratio.
4. Conclusions

We have established a revised capstan model by adding
both extensibility and the Poisson effect of the rod, along
with the bending rigidity and nonlinear friction, and solved
it numerically. From the present analysis, the following
conclusions have been drawn:
1.
 The rod extensibility enhances the tension ratio compet-
ing with the reversing effects of rod rigidity and
frictional nonlinearity. In case of linear frictional
behavior, larger initial strain renders more increase of
the tension ratio. This effect becomes more remarkable
at high radius ratio and low modulus. However, the
effect of frictional power–law may oppress the effect of
rod extensibility since the increase of the initial strain
causes the increase of the initial tension, and the larger
initial tension decreases the tension ratio more.
2.
 The effect of Poisson’s ratio also increases the tension
ratio. Calculated average strain throughout the rod was
up to 2.6 times larger than initial strain. But the amount
is almost negligible since the reduction of the rod radius
due to Poisson’s effect is at most 7.8%. The contribution
of Poisson’s ratio (v ¼ 0.3) to the tension ratio is
equivalent to the contribution of 1.078 times larger
radius ratio at most. Thus, it is well enough to consider
the extensibility effect only.
3.
 The initial tension plays an important role once the
modification of the Amonton’s law of friction into
power–law relationship is applied. Power–law frictional
relationship (n ¼ 0.67) decreases the tension ratio, but
only at the initial tension level sufficiently large. At
relatively high initial tension, its effect dominates over
all the other factors, while they may compete with it at
low initial tension.

We also presented several prerequisites to establish the
model. Three major issues about this model were intro-
duced and clarified.
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