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This paper provides a full numerical tool set for modeling and predicting an effective apparent
dielectric constant of multiphase microporous media, which includes a multiparameter random
generation-growth algorithm for generating microstructures of multiphase porous media and a
lattice Boltzmann solver for the electric potential transport equations through porous structures.
After being validated by the theoretical solutions for simple geometries, the present methods are
used to investigate the phase distribution effects on the effective dielectric constant of multiphase
microporous media, including the effects of particle size, structure anisotropy, and phase
aggregation caused by wetting characteristics between phases for multiphase cases. The resultant
predictions at the end agree well with the existing experimental data for both two-phase and
three-phase cases. © 2007 American Institute of Physics. �DOI: 10.1063/1.2743738�

I. INTRODUCTION

Predicting the electric properties of a medium composed
of a mixture of different dielectric materials has been a chal-
lenging problem of both theoretical and practical
importance.1–5 These heterogeneous systems composed of
two or more phases show different conductive and dielectric
properties depending on not only the electric property and
volume fraction of each phase but also the geometrical
shapes and arrangements of the inclusions.6,7 Most popular
theoretical models for the dielectric constant of porous media
are based on networks of parallel and series modes8–11 or
introducing the morphology effects of a porous structure by
some empirical parameters.12–21 No analytical model has
been found that deal successfully with a dielectric constant
of natural porous media with random phase distributions and
interactions up to now.22

Owing to the rapid developments of computers and com-
putational techniques in the past twenty years, numerical
modeling methods have been increasingly used to predict an
effective dielectric constant of porous media. A complete nu-
merical determination of dielectric properties of porous me-
dia should include two aspects: acquiring and reproducing
random multiphase structures in terms of computer data cor-
rectly and solving the relevant set of local electric potential
transport equations efficiently.

Several methods have been proposed to generate micro-
structures of multiphase materials in the past decade. The
random location of obstacles is the simplest one to construct
an artificial porous medium when the microstructure details
are negligible.7,23,24 Tacher et al.25 presented a discrete re-
duced distance method to generate spherical/elliptical two-
phase granular porous media. Based on the work of Tacher
et al., Pilotti developed a grain sedimentation algorithm.26

Both the methods of Tacher et al. and Pilotti generate porous
media with random size and locations, however, neither can
deal well with the interactions between grains. Therefore nei-

ther is suitable for electric transport problems which are ex-
tremely sensitive to contacts. Recently, the reconstruction
process has been widely used in generating random
two-phase27,28 and multicomponent29,30 porous materials
based on the digital microtomographic information and sta-
tistical correlation functions.31 This kind of reconstruction
method is more suitable for nonfluidic or single-fluid sys-
tems rather than for multiple fluid systems. Mohanty32 there-
fore generated unsaturated porous media using a Monte
Carlo annealing algorithm by means of the law of lowest
interfacial energy. Wang et al.33,34 proposed a multiparameter
random generation-growth method, termed as the quartet
structure generation set �QSGS�, to replicate randomly dis-
tributed multiphase porous media based on the cluster
growth theory35 and then investigated thermal properties of
porous media.

Conventional partial difference equation �PDE� solvers,
such as the finite difference method �FDM�,36–39 finite ele-
ment method �FEM�,40–43 and boundary element method
�BEM�,44,45 have been applied to tackle the governing equa-
tions of electric potential transports in porous media or bi-
nary mixtures. However, the structural complexities bring in
two challenges when the governing equations are to be
solved by conventional PDE solvers. The first is the require-
ment of a grid refinement for complex structures: The accu-
racy of a conventional numerical method is strongly depen-
dent on the grid size so that an extra fine grid is needed
whenever the transport process is complex in physics and/or
in geometry. When dealing with multiphase conjugate trans-
port problems in porous media with complex geometries, this
requirement will confine the computational domain into a
very limited area in practice. The second is the conjugate
constraint on interfaces between different phases: For a
steady electric field transport through multiphase structures,
electric potential and flux continuities have to be ensured at
the interfaces when solving the governing equations, thus
demanding extremely high computational resources for a po-
rous medium with innumerable interfaces in the structure. To
overcome such difficulties, few methods based on stochastic-a�Electronic mail: mmwang@ucdavis.edu
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statistic theories have gained much attention for porous me-
dia applications recently.5,46,47 For example, Yue et al.48,49

have developed a lattice gas automata method to predict the
electric transport properties in two-dimensional multiphase
porous media.

The objective of the present work is to provide a full
numerical tool set for modeling and predicting a frequency-
independent effective dielectric constant of multiphase mi-
croporous media, including a multiparameter random
generation-growth algorithm termed as QSGS for reproduc-
ing microstructures of multiphase porous media into the
analysis, with further improvement in this study to empha-
size the macroscopic parameter effects on the microstruc-
tures, and a lattice Boltzmann algorithm for solving the elec-
tric potential transport equations through porous structures,
more efficient than any other widely used PDE solvers for
complex structures, especially with the multiphase conjugate
transport effect considered. The article is organized as fol-
lows. In Sec. II, we present the governing equations along
with the corresponding boundary conditions, and in Sec. III
we introduce the employed numerical methods, including the
QSGS for generating microstructures of multiphase mi-
croporous media and the high-efficiency lattice Boltzmann
algorithm. Numerical results are gathered in Sec. IV. After
the numerical methods are validated by existing theoretical
solutions for simple cases, the new tools are used to analyze
the effects of phase distributions on the effective dielectric
constant of multiphase microporous media including the in-
fluences of the grain size, the system anisotropy, and the
multiphase interactions. Finally the predictions are compared
with published experimental data.

II. GOVERNING EQUATIONS

Once the effective medium theory �EMT� is applicable,50

the electric potential transport in a multiphase porous me-
dium can be governed by the Laplace equation when there
are no current sources within the domain.41,42 Let us consider
a parallel plate capacitor with a constant potential difference
as shown in Fig. 1. An uncharged porous medium fills the
capacitor space L long and H high. The governing equation
for electric potential transport is

���r�r� � ��r�� = 0, �1�

where r is the position, �r represents the local relative dielec-
tric constant of medium, and � is the local electric potential,
in conjunction with the following boundary conditions:

���y=0 = �1, �2�

���y=H = �2. �3�

The edge fringing effect can be eliminated by a periodic
extension at the following conditions:

�n · ���x=0,L = 0, �4�

where n denotes the unit vector normal to the surface con-
sidered. As mentioned above, there are lots of phase inter-
faces within such porous media. On each interface between
phase m and phase n, the potential and flux are supposed to
be continuous, i.e.,

�m = �n, �5�

Dm = Dn, �6�

where D is the electric flux,

D = �0�rn · �� , �7�

and �0 is the dielectric constant of vacuum.
After the electric potential field is solved, the global ef-

fective dielectric constant �eff is then defined by the mean
electric flux �D� and mean potential gradient ����,51

�eff =
�D�

�0����
. �8�

III. NUMERICAL METHODS

A. The quartet structure generation set for
multiphase porous structure

Here we use our QSGS method33 to generate microstruc-
tures of multiphase microporous media, whose flow chart is
schemed in Fig. 2 and the algorithm is described as follows.

Before initiation, one has to determine among the differ-
ent phases a nongrowing phase and the rest will be the grow-
ing ones. For generality, we call each growing phase as nth
phase, where n=2, ... ,N, the total number of phases in the
system. Customarily without losing generality, the discrete
phases are taken as the growing phases. For example, rocks
and moisture are the growing phases in unsaturated sands,
whereas gas is the growing phase in polyurethane foams.
Then the structure growing process follows the steps below:

�i� Randomly locate the cores of the first growing phase
in a grid system based on the core distribution prob-
ability cd whose value is no greater than its volume
fraction P2. Each cell in the grid will be assigned a
random number by a uniform distribution function
within �0, 1�. Each cell whose random number is no
greater than cd will be chosen as a core.

�ii� Expand the core of the growing phase into its neigh-
boring cells in all directions based on its given direc-
tional growth probability Di where i represents the

FIG. 1. A parallel plate capacitor with multiphase porous internal structure.
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direction. Again new random numbers will be as-
signed to its neighboring cells; the neighboring cell in
direction i will become part of the growing phase if its
random number is no greater than Di. Especially for a
two-dimensional case, each square elemental cell has
eight growing directions to its neighbors, i.e., i
=1,2 , . . . ,8 as seen in Fig. 3. There are four main
directional growth probabilities D1–4 and four diago-
nal directional growth probabilities D5–8. To obtain an
isotropic structure in such systems, we have to set the
directional growth probability ratio D1–4 :D5–8=4,
consistent with the equilibrium density distribution
function for uniform media.33

�iii� Repeat the growing process of �ii� until the volume
fraction of the first growing phase reaches its given
value P2.

�iv� As to the next growing phase, there are two cases to

consider depending on its interaction with the existing
phase�s�. If this phase is an equivalent discrete phase
as the existing growing phase, such as a multicompo-
nent mixture, it grows from separate seeds, which is
very similar as the first growing phase described in
�i�–�iii�. Otherwise, we have to consider the constraint
by and interaction with the existing phase�s�. For such
cases, the nth phase �n�2� will grow based on a
phase interaction growth probability Ii

n,m, which rep-
resents the growth probability of the nth phase on the
mth phase along the ith direction.

�v� Stop the nth phase growth once its volume fraction
reaches its volume fraction Pn.

�vi� Repeat the next phase growth as described in �iv� and
�v� until n=N.

�vii� The spaces not occupied at the end represent the non-
growing phase.

Thus, the four parameters �cd, Di, Pn, and Ii
n,m� control

the microstructures of generated porous media based on the
generation process, whose values can be determined through
the statistically analysis of measured data. Comparing with
the previous generation methods, this QSGS has the follow-
ing merits: �i� The generation-growth process is analogous to
the natural formation process of some real granular porous
media which grow outward from cores. �ii� Each of the pa-
rameters in the algorithm has a distinct physical significance,
instead of an empirical determination. �iii� It deals well with
multicomponent connection problems. �iv� The stochastic
and statistical features are introduced smoothly into the sys-
tem. �v� The method is efficient without turning to any itera-
tion process. Finally the algorithm is straight forward in
three-dimensional and/or multiphase cases, and suitable for
parallel computing.

B. Lattice Boltzmann algorithm for electric potential
transport equations

The lattice Boltzmann method �LBM� is intrinsically a
mesoscopic approach based on the evolution of statistical
distribution of lattices, and has achieved considerable suc-
cess in simulating fluid flows and associated transport
phenomena.52–55 The most important advantages of the LBM
are the easy implementations of multiple interparticle inter-
actions and complex geometry boundary conditions,56 and in
general the conservation laws can hold automatically without
additional computational efforts.52,53 The LBM has been de-
veloped successfully for simulations of hydrodynamics,57,58

thermodynamics,33,34,59 and electrodynamics60 in porous me-
dia. The multiphase conjugate boundary conditions have
been developed very recently and it was found that the LBM
has a much better efficiency than FDM even for a very
simple geometry problem.61

For the electric potential transport governing equation
�Eq. �1��, we employ the evolution equation on discrete lat-
tices for each phase as

FIG. 2. Flow chart of the QSGS process.

FIG. 3. Eight growth directions of each cell in two-dimensional �2D�
systems.
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g��r + e��t,t + �t� − g��r,t� = −
1

�n �g��r,t� − g�
eq�r,t�� ,

�9�

which is actually a simplified form of the evolution equation
for the Poisson equation by eliminating the source terms.62

The equilibrium distribution of the evolution variable g� for
the two-dimensional nine-speed �D2Q9� model is

g�
eq =�

0 � = 0

1

6
� � = 1,2,3,4

1

12
� � = 5,6,7,8,	 �10�

the microscopic velocity is

e� =�
�0,0� � = 0

�cos ��,sin ���c �� = �� − 1��/2

� = 1,2,3,4


2�cos ��,sin ���c �� = �� − 5��/2 + �/4

� = 5,6,7,8,
	

�11�and the dimensionless relaxation time is

�n =
3

2

�r
n

c2�t
+ 0.5, �12�

where the subscript n still represents the nth phase, �t is the
time step, �r is the relative dielectric constant, and c is a
pseudo sound speed whose value can theoretically take any
positive value to ensure � values within �0.5, 2�.55 The elec-
tric potential and flux on each lattice are then calculated by

� = �
�

g�, �13�

D = ��
�

e�g��n − 0.5

�n . �14�

For the isopotential boundary treatment, we follow the
bounce-back rule of the nonequilibrium distribution pro-
posed by Zou and He.63 For an insulated boundary, a specu-
lar reflection treatment is implemented here to avoid an en-
ergy leak along the surfaces.33 After the potential field is
solved, the effective dielectric constant �eff can then be de-
termined based on Eq. �8� as

�eff =

H� DdL

	�� dL

, �15�

where D is the steady electric flux through the cross section
area dL between the electric potential difference 	� with a
distance H.

IV. RESULTS AND DISCUSSION

We calculate the effective dielectric constant of multi-
phase microporous media in two steps: reproduce a micro-

structure based on its macroscopic geological information
using QSGS and then solve the electric potential transport
governing equations through the structure by LBM. The ef-
fective dielectric property is calculated based on Eqs.
�13�–�15�. Recently Wang et al.34 have found that the mea-
surement techniques based on a hot probe or a hot wire are
actually two-dimensional techniques even though the porous
media has three-dimensional structures. Since the hot probe
and hot wire are still most popular techniques in measure-
ments of dielectric constant, we present two-dimensional
simulations in this contribution. In this section, after the
present numerical methods are validated by theoretical solu-
tions for simple structures, they are used to investigate the
effects of phase distributions and interactions on the effective
dielectric constant of multiphase microporous media. The
predictions will be compared with existing experimental
data.

A. Initial validations

First we calculate the effective dielectric constant for
two basic structures of double-component materials: the par-
allel mode and the series mode �see Fig. 4�. Assuming the
dielectric constants of each component are �r

1 and �r
2, respec-

tively, the simple theoretical solutions offer the effective di-
electric constant as ��r

1+�r
2� /2 for the parallel mode and

1/ �1/2�r
1+1/2�r

2� for the series mode.40

Table I lists our calculated effective dielectric constant
comparing with above theoretical solutions for different val-
ues of �r

1 :�r
2. We keep �r

1 as 1.0 while changing �r
2 from 2.0

to 10 000 using a grid of 200
200. Such a large contrast
between �r

1 and �r
2 leads to a long computational time to

converge to a steady result, and yet provides a good test on
our model. The deviations between the predictions are not
greater than 0.006% for the parallel mode and 0.765% for
the series mode even in such large dielectric constant con-
trasts, demonstrating a good accuracy of our approach.

B. Particle size effect

Several researchers have reported that the effective di-
electric constant of porous media may differ from each other
for different average pore/particle sizes even though the
components and the porosities of the media are the same,6,7

and yet few analyses have been found to predict these phe-
nomena nicely so far. Here we control the average pore/

FIG. 4. Two basic structures for validation: �a� parallel mode and �b� series
mode.
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particle size by changing the values of the particle core dis-
tribution probability cd so that a greater value of cd leads to a
smaller average size of particles for a certain volume
fraction.33 Figure 5 demonstrates two thus generated struc-
tures at given solid particle volume fraction Ps=0.5, where
cd in Fig. 5�a� is ten times of that in Fig. 5�b�. The structure
for a higher cd looks more uniform and has a higher surface-
to-volume ratio.

After the porous structures are generated at different cd

values, the particle size effect on the effective dielectric con-
stant of porous media is then investigated on a grid of 200

200. Figure 6 shows the predicted effective dielectric con-
stant versus the solid volume fraction Ps at two different cd

values. The relative dielectric constants of the components
are �r

s=5.0 and �r
g=1.0, where the superscript s represents

the solid phase and g the gas phase. The theoretical solutions
for the parallel mode and series mode are also compared in
the same figure. The results show that the effective dielectric
constants of random porous media are between the values of
the parallel mode and series mode �the upper and low
bounds�, and a larger average particle size leads to a lower
effective dielectric constant of porous media for all range of
porosity except at 0 and 1. The largest difference between the
effective dielectric constants at different cd values occurs
when the solid fraction is within 0.5–0.8. Thus we hold the
solid volume fraction Ps=0.5 and change the cd value in-
stead. The predicted effective dielectric constants at different
values of cd are then shown in Fig. 7, indicating that the
effective dielectric constant increases with the core distribu-
tion probability cd. Since the average particle volume is in-

versely proportional to the value of cd, the result suggests the
effective dielectric constant of porous media decreases
monotonically with the average particle size.

In Fig. 7, we performed three trails for each value of cd.
The calculated effective dielectric constants do not fall into
the same value for each trail, but fluctuated around an aver-
aged value due to the stochastic characteristics of generated
structure geometries. The results show that when cd is
smaller than 0.005 Ps the fluctuations become quite big;
while once cd is larger than 0.01 Ps, the fluctuations are in a
very low level ��3% �.

C. Anisotropy effect

Most previous works have focused on the isotropic cases
of porous media. A few researchers have generated an aniso-
tropic porous material by putting groups of ellipses together
with different axis lengths or orientation angles.8 Here we
can achieve anisotropic phase distributions easily based on
the QSGS process by choosing different values of the direc-
tional growth probability Di. Figure 8 shows the generated
structures for different ratio values of Dx :Dy, where Dx are
the horizontal main directions �directions 1 and 3 in Fig. 3�
and Dy are the vertical main directions �directions 2 and 4 in
Fig. 3�. We set D5–8=Dy /4 and the other parameters Ps

FIG. 6. Effective dielectric constant vs solid volume fraction for different
values of cd.

TABLE I. Comparisons between predicted results and theoretical solutions with �r
1=1.0.

�r
1 :�r

2

Results

Parallel mode Series mode

Theoretical
value

Present
predictions

Relative
deviations

�%�
Theoretical

value
Present

predictions

Relative
deviations

�%�

1:2 1.500 1.500 0.000 1.333 1.332 0.075
1:10 5.500 5.500 0.000 1.818 1.815 0.165

1:100 50.50 50.50 0.000 1.980 1.976 0.202
1:500 250.5 250.5 0.000 1.996 1.991 0.250

1:1000 500.5 500.5 0.000 1.998 1.993 0.250
1:10 000 5000.5 5000.2 0.006 1.9998 2.0151 0.765

FIG. 5. Structures for different values of cd at Ps=0.5. The directional
parameters are set as D1–4 :D5–8=4:1. The dark area is gas and the white the
solid. �a� cd=0.1Ps and �b� cd=0.01Ps.
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=0.5 and cd=0.01Ps. The grid used is 200
200. The micro-
structures generated shows quite different characteristics
with different values of directional growth probabilities. The
anisotropy increases with the Dx :Dy ratio. The directional
growth probability corresponds to the macrostructure statis-
tical orientation features, and can thus be determined by
measurement data from real porous structures.

After the anisotropic microstructures are generated, we
change the Dx :Dy ratio from 1/100 to 100 and depict the
predicted effective dielectric constant along the vertical di-
rection. Figure 9 shows the numerical results where Ps=0.5,
cd=0.01Ps, �r

s=5.0, and �r
g=1.0. The results indicate that the

effective dielectric constant decreases monotonically with
the increasing ratio of Dx :Dy. For a given porosity, the ef-
fective dielectric constant is enhanced along the direction
with a higher growth probability and weakened meanwhile
along the orthogonal direction.

D. Phase aggregation effect

When a porous medium contains more than two phases,
the multiphase interaction effects on the material properties
have to be considered. For a three-phase porous medium
with gas, liquid, and solid, the simplest case is to generate
the liquid phase with a uniform phase interaction growth
probability, i.e., Ii

l,l : Ii
l,s=1 with l representing the liquid

phase and s the solid phase. This hypothesis is based on a
strong wetting effect caused by a strong liquid-solid attrac-
tive potential, and will result in a uniform liquid film at-

tached on the solid grains as shown in Fig. 10�a�. The
smaller is the Ii

l,l : Ii
l,s ratio, the more uniform is the liquid film

�see Fig. 10�b��. Such structures can be found in some mul-
ticomponents composite materials.12 However, for the unsat-
urated sandstones or glass assembles, the wetting character-
istic of water may be different. The measured images53 have
shown that the water in sandstones or glass assembles tends
to be in conglomeration form rather than in films on the solid
surfaces due to the weak wetting properties. Therefore we
also reproduce the water distributions similar to those in
sandstones or glass assembles by enlarging the values of
Ii

l,l : Ii
l,s ratio, as shown in Figs. 10�c� and 10�d�. Now we can

use Fig. 10 to compare the water distributions in porous me-
dia at different phase interaction growth probabilities. The
solid phase distributions are anisotropic with the volume
fraction Ps=0.5 and cd=0.01Ps. The volume fraction for wa-
ter Pl is 0.25 and the ratio of Ii

l,l : Ii
l,s changes from 10:1 to

1:100. A greater Ii
l,l : Ii

l,s ratio corresponds to a weaker wetting
interface, i.e., the liquid as a result will be more aggregative.

FIG. 7. Effective dielectric constant vs values of cd for Ps=0.5.

FIG. 8. Microstructures of anisotropic porous media with different direc-
tional growth probabilities at cd=0.01Ps and Ps=0.5. The dark is gas and the
white is solid. �a� Dx :Dy =1:1 and �b� Dx :Dy =10:1.

FIG. 9. Effective dielectric constant of anisotropic porous media for differ-
ent Dx :Dy.

FIG. 10. Microstructures of three-phase porous media with different phase
interaction growth probabilities. The gray is the solid particles, the white is
the liquid, and the dark is the gas. The solid phase is isotropic with Ps

=0.5 and cd=0.01 Ps, and the liquid volume fraction with Pl=0.25. �a�
Ii

l,l : Ii
l,s=1:1, �b� Ii

l,l : Ii
l,s=1:10, �c� Ii

l,l : Ii
l,s=10:1, and �d� Ii

l,l : Ii
l,s=100:1.
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The influences of the phase interaction growth probabil-
ity on the effective dielectric constant of multiphase porous
media are better illustrated in Fig. 11. Assuming again the
unsaturated sandstone case where the solid particle volume
fraction is Ps=0.5 and cd=0.01Ps, the water volume fraction
is Pl=0.3, and the dielectric constants of each phase are �r

s

=5.0, �r
l =80 and �r

g=1.0, respectively. Figure 11 shows the
predicted effective dielectric constants at different liquid-
solid phase interaction growth probabilities. The present re-
sults indicate that the effective dielectric constant of multi-
phase porous media decreases with the ratio Ii

l,l : Ii
l,s and has a

more drastic reduction at a higher Ii
l,l : Ii

l,s ratio, or for a
weaker wetting interface.

E. Comparisons with experimental data

Finally, our predictions are compared quantitatively with
some published data of the measured dielectric constant of
multiphase porous media as well. As there is little informa-
tion presented along with the experimental data in those
studies, we are not able to assign the geometrical parameters
for the QSGS model with certainty and have to evaluate their
values from related information. For simplification, we sup-
pose the porous structures in the comparison are isotropic
�D1–4 :D5–8=4:1�, and the solid surface is hydrophilic
�Ii

l,l : Ii
l,s=1� in case of three-phase systems. The two assump-

tions, especially the latter one, may not be true to the original
experiments and may thus lead to deviations in our predic-
tions, and more strict validations can be done if both geom-
etry information and measured dielectric properties are avail-
able.

Consider a glass porous structure that is either dry or
saturated fully by a liquid, i.e., a two-phase case. Sen et al.
measured the dielectric constant of such porous systems in
three cases: dry, water saturated and methanol saturated.64

We reproduce porous structures by QSGS with cd

=0.01Pglass on 200
200 grids and calculate the effective
dielectric constant by LBM with the component dielectric
properties: �r

water=80, �r
methanol=30, �r

air=1, and �r
glass=6.4.64

Figure 12 shows the predicted effective dielectric constant
versus the porosity �1− Pglass� for the three cases compared

with the experimental data. The symbols are the experimen-
tal data64 and the solid lines are the predicted values. The
numerical results show good agreements with the experimen-
tal data.

When the solid porous structure is partially saturated by
the liquid, the effective dielectric constant of the multiphase
system may change greatly with the liquid content. A tech-
nique has been developed by that the volumetric water con-
tent can be evaluated from the measured value of effective
dielectric constant of unsaturated soil sample.7,9,16,22 Here we
simulate such a three-phase system using the present numeri-
cal methods. Figure 13 compares our predicted effective di-
electric constant of such unsaturated soil with the measured
data of Andisoil �Miyamoto et al.� �Ref. 65� and those by
other theoretical models reported in Refs. 16 and 66. The
solid soil particles are reproduced by QSGS with Psoil

=0.27 and cd=0.01Psoil. The component dielectric properties
used are �r

water=80, �r
soil=5.5, and �r

air=1.66 Comparing with
the results by other theoretical models, the present predic-
tions agree most closely with the experimental data. The

FIG. 11. Effective dielectric constants of three-phase porous media for dif-
ferent liquid-solid phase interaction growth probabilities.

FIG. 12. Effective dielectric constant vs porosity for porous glass �two-
phase cases� where cd=0.01Pglass, �r

water=80, �r
methanol=30, �r

air=1, and
�r

glass=6.4.

FIG. 13. Effective dielectric constant vs volumetric water content for unsat-
urated soil �three-phase cases� where �r

water=80, �r
soil=5.5, and �r

air=1.

114102-7 M. Wang and N. Pan J. Appl. Phys. 101, 114102 �2007�

Downloaded 07 Jun 2007 to 169.237.209.3. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



agreements should be better if we know the geometry accu-
rately so as to use more correct geometrical parameters in
QSGS.

V. CONCLUSIONS

This paper provides a full numerical tool set for model-
ing and predicting a frequency-independent effective dielec-
tric constant of multiphase microporous media, including a
multiparameter random generation-growth algorithm for
generating microstructures of multiphase porous media, and
a lattice Boltzmann solver for the electric potential transport
equations on porous structures. After validated by the theo-
retical solutions for simple geometries, the present methods
are used to investigate the phase distribution effects on the
effective dielectric constant of multiphase microporous me-
dia, such as the particle size effect, anisotropy effect, and
phase aggregation effect for different wetting characteristics
between phases. The results show that a smaller average par-
ticle size leads to a larger effective dielectric constant at
given porosity; the effective dielectric constant will be en-
hanced along the relatively larger directional growth prob-
ability, which controls the anisotropy of the generated porous
media, and as a result the effective dielectric constant in the
other direction is weakened. For multiphase porous media,
the degree of phase aggregation is determined by the surface
wetting properties and controllable by the phase interaction
growth probabilities in our model, and simulations for unsat-
urated soil show that the effective dielectric constant of
three-phase porous media decreases with the degree of liquid
phase aggregation. The present predictions agree well with
the existing experimental data for both two-phase and three-
phase cases.
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