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ABSTRACT

This article proposes a new and simple technique to
predict the elastic material constants for a random fiber
composite, including tensile and shear moduli and the
Poisson’s ratios for both 2-D and 3-D cases. Through a
simple example how the Rule of Mixtures is derived for
a unidirectional composite, the present author first
demonstrates that what differentiates a random fiber
composite from a unidirectional one lies in the fiber
orientation, which can be best reflected from the
relationship between the system fiber volume fraction
V;and the fiber area fraction Ay at a given direction of
the composite. By establishing a general relationship
between V; and A, using the fiber orientation density
function, the author has developed a simple method
based on the Rule of Mixtures to calculate the elastic
properties of a random fiber composite.

The new model is compared to several existing
models derived using more complicated mechanistic
and mathematical theories. Previously published ex-
perimental data are also employed to verify the
predictions of the new model.

The results are found to be reasonably satisfactory.

KEY WORDS: eclastic properties, random fiber
composites, fiber orientation density function, fiber
volume and area fractions.

1. INTRODUCTION

Short fiber composites are being extensively used in
various applications. The ease of manufacturing, good
reinforced mechanical properties and macroscopic iso-
tropy when fibers are randomly oriented are some of
the unique advantages which make the short fiber com-
posites an attractive category in composite materials.
However, because of the complicated structural and
mechanical features involved, short fiber composites
remain one of the least understood areas in composite
science /1/.

Fiber composites are non-uniform materials by
definition; a fiber composite is a mixture of two distinct
constituents, the fibers and the matrix material, with
remarkably different properties. Another source
yielding non-uniformities in a fiber composite is due to
the intrinsic anisotropy of the fibers, assuming the
matrix to be isotropic. Consequently, the properties of a
composite are to a great extent dependent on the fiber
orientations in the composite.

There have been numerous theories and models on
the mechanics of short fiber composites, and some of
the representative references are provided in the
reference list of this paper /2-11/. The earlier ones are
summarized in an excellent review article by Chamis
and Sendeckyj /12/, and the more contemporary ones
are collected and compared in /13/ by Chou. Recently,
several new contributions to this area were made by
Carman and Reifsnider /14/, Jasiuk, Chen and Thorpe
/15/, Torquato and Lado /16/, Anlas and Stantare /17/,
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Eischen and Torquato /18/ and Giurgiutiu and
Reifsnider /19/.

One of the major issues in short fiber composite
study is to predict its elastic properties. The conven-
tional method of calculating the moduli of a short fiber
composite is to use the Halpin-Tsai equations /20/.
Another rigorous approach dealing with the short fiber
composite structure is based on the self-consistent
method, which assumes that the fiber and matrix are
isotropic, homogeneous and linearly elastic. Several
authors /15,21/ have proposed theoretical models for
short fiber composites using this technique. Still, a
popular method is based on the classical laminate
analogy /22-24/, where a random fiber composite is
treated as a laminate constructed from a large number
(> 3) or an infinite number of orthotropic plies oriented
in all directions. This model, coupled with the usual
micromechanic formulation, yields results for the
properties of the composite. Also, several investigators
/25-28/ have adopted Cox’s technique /31/, utilizing the
statistical density function to deal with fiber orientation
in a random fiber composite so as to derive the elastic
constants. Additionally, another alternative, named the
bound approach, was also utilized by /16,18,32/ to
predict the upper and lower bounds of the tensile
modulus of short fiber composites. The problem with
the existing techniques lies in the complexity of the
results and the lengthy calculation procedures, and
consequently these techniques are sometimes difficult
to use in practice, unless simplified and thus losing
their rigor.

A new and ratker simple theoretical model is
presented in this paper which is aimed to derive the
relationship between the overall system fiber volume
fraction V; and the fiber area fraction 4, at a cross
section of the composite. Combined with the Rule of
Mixtures, this method is able to predict the elastic
material constants, including various moduli and the
Poisson’s ratios.

It is widely recognized that accurate short fiber
composite models are quite difficult to develop as a
consequence of the complex interactions at the fiber-
matrix interface as well as the limited fiber length and
fiber ends effects. Therefore, a more or less idealized
physical model becomes indispensable for any
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theoretical analysis. We hence adopt the following
often used assumptions for the present analysis:

1. The composite consists of identical fibers, uniform
in properties. Since the effect of fiber length has
been investigated rather extensively /4,7/, and also
this effect has little direct relevance to the new
approach proposed below, we assume all the fibers
are long enough so that this fiber length influence
can be ignored.

2. All fibers are distributed uniformly along the length
of the composite so that the fiber area fractions on
all the cross sections in the same direction of the
composite are identical.

3. Both fibers and matrix behave elastically. There is
complete bonding at the interface of the constituents
and the effect of the transitional region or interface
on the eclastic properties of the composite is
excluded.

4. Furthermore, the fiber-fiber interaction within the
composite and the effect of matrix property change
as a result of the fiber interference are also ignored.

2. RELATIONSHIP BETWEEN FIBER VOLUME
FRACTION V; AND AREA FRACTION 4,

We will first show here that the critical obstacle which
prevents the simple Rule of Mixtures from being appli-
cable to a random fiber composite is due to the lack of a
relationship between the system fiber volume fraction
V; and the fiber area Ay in a given direction. And this
relationship is in fact dominated by the fiber orientation
in the composite..

2.1. The unidirectional case

To elucidate the question clearly, let us go back to
examine the simplest case: a unidirectional composite
which is made of parallel fibers embedded in a matrix
as depicted in Figure 1(a). When an external tensile
load is exerted in the direction of the fiber axes which
coincides with that of the composite principal direction,
the strains experienced by the fiber, matrix and
composite can be considered as equal
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Fig. 1: A unidirectional composite and the
coordinate system: (a) the forces on a cross
section of the composite, (b) the coordinates
of a fiber in the system.

€c=€f = €n | '6))

Since the total load F, is shared between the fiber and
matrix, we have

Fo=Fs+Fp )
or in terms of stresses
0 A(c) = a7 A(f) + omA(m) 3
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where A(c), A(f), and A(m) are the corresponding cross
section areas of the composite, the fiber and the matrix.
Furthermore

Al
A(e)

At the cross section in question, the fiber area fraction

A
0. =0y 40 ———==0;A5+0.Apn “
4

is equal to the volume fraction, i.e.,
_AY) _ 5
1=a0 =" ©
so that
0. =0fAs+0Amn =07V +0Vn 6)

The elastic modulus of the composite in this direction
can then be readily obtained from the above equation as

E.=EVy + EnVa, 0

Equations (6) and (7) are the well-known Rule of
Mixtures for composite stress and tensile modulus,
respectively.

It is now clear that the critical condition for the
applicability of the Rule of Mixtures in this case is
Equation (5), i.e., the relationship between 4y and V.
At such cross sections of a unidirectional composite,
the fiber volume and area fractions are identical.
However, this condition will no longer occur if fibers,
instead of being parallel, are oriented in different
directions. In that case, the composite is no longer a
unidirectional one. When we cut arbitrarily cross
sections in different directions of the composite, the
number of fiber ends exposed on the cross sections will
no longer be identical, and the shapes of the fiber ends
on one composite cross section will not all be circular
due to various orientations of the fibers. Numerically,
for such composites, the fiber area fraction at a cross
section will in general be different from the overall
system fiber volume fraction V.. Moreover, although
the system fiber volume fraction V; remains a constant,
the fiber area fraction 4, will change from direction to
direction in the composite, unless fibers are oriented in
such a way that the composite becomes an isotropic
one.
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Apparently, the key issue now is to try to establish a
general relationship between the system fiber volume
fraction ¥ and the fiber area fraction 4, for once such
a relationship is available in place of Equation (5), we
can still apply the Rule of Mixtures to calculate the
elastic properties of other composites’ than just uni-
directional ones.

In fact, such a general relationship has recently
been developed by the present author in /33/. In the
next section, we will first very briefly introduce the
related theoretical background and this V-4, relation-
ship. We will then compare the new approach with the
existing theories as well as the previously published
experimental data in a later section.

2.2, A general V-4, relationship

In the spatial curvilinear coordinate system in Figure
1(b), the orientation of a fiber in the composite can be
defined uniquely by a pair of angles (6, ¢), provided
that the polar angle 0 < 6 < = and the base angle 0 < ¢
< n. Meanwhile, the direction of any cross section in
the composite can be represented by the direction of its
normal defined by another angle pair (@, ¢). Because
of the existing anisotropy, the fiber area fraction 4y (@,
®) on a cross section will be a function of the direction
of the cross section (©, @), although on this given cross
section (®, @) we still have the relation between the
fiber and matrix area fractions

Af(e"b) + Am(e»Q) =1 (8)

Next, we define a probability density function (pdf)
Q(0, ¢) to specify the fiber orientation, subject to the
normalization condition

/0 do /0 déQ (0, ¢)sinf = 1 ©

Consider an arbitrary cross section of direction
(®, ®) in the composite. Pan has proved in /33/ that the
fiber area fraction A(©, ®) is related to the system
overall fiber volume fraction V; through the probability
density function as

A0, 8) = Q(0,8)V; (10)
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where Q (©, @) is the value of the pdf in direction
(®, ®). This equation reveals that generally the fiber
area fraction is a function of direction, and is hence
different from the constant system fiber volume
fraction. The difference is caused by fiber misorienta-
tion, if the matrix is considered isotropic. The only case
where Ay = V;is when the density function Q(®, ©) =
1; this happens only in the composites made of fibers
unidirectionally oriented in direction (©, ).

Replacing Equation (5) with the above V; — A4y
relationship in Equation (10), we obtain the expression
of the elastic tensile modulus in direction (®, @) for a
composite with arbitrary fiber orientations
E.(0,®) = EfQ©,9)V; + En(1 - 0,8)V;) (11)

Consequently, we can now predict the tensile
modulus, as well as its direction dependence, or the
anisotropy, of the composite once the pdf'is given.

3. PREDICTIONS AND DISCUSSIONS

Adthough progress has been made continuously, there is
still no simple technique, experimental or analytical,
for the acquisition of the pdf function for a given
composite. We hence focus here on a special case:
random fiber orientation so that Q(®, @) will be a
constant independent of directions. The composites
therefore become isotropic.

3.1, For 2-D cases

We start by looking at a planar 2-D case. In fact, 2-D
random fiber orientation is of practical importance, as
mentioned in /21/. In the case of injection moulded
objects, fiber orientation distribution is dependent only
on the base angle if the direction of flow is along the
composite principal axis. In sheet moulding compounds
it is reasonable to assume that the short fibers all lie
within a plane and the problem is again reduced to a
two-dimensional one. In either case, the fiber orienta-
tion can be considered independent of the polar angle;

we can hence set in the following analysis 6 = ©® = l;—
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The pdf function thus becomes
Q¢) = Qo 12)

where € is a constant whose value is determined using
the normalization condition as

Q= = (13)
T
Then the tensile modulus in Equation 11 is
E?P = E,% + En(1 - ‘—:ri) (14)

According to several sources, for instance in /20,29/
and as validated experimentally in /30/, the Rule of
Mixtures is also applicable to the Poisson’s ratio of a
unidirectional composite, then by the same reasoning as
in the case of tensile modulus, we can derive for the
Poisson’s ratio

v = u,ﬁ + Um(1 — ﬁ) (15)

™ T

where v and v, are the Poisson’s ratios for the fiber
and matrix, respectively.

3.2. For 3-D cases

The 3-D random fiber composite is rarely used in
practice, mainly because of the difficulty in controlling
fiber orientation in three dimensions. In this case, the
fiber orientation will be independent of both the polar
and base angles. Therefore, the normalization condition

gives
(0,%) = L (16)
( ’ ) 2%

The tensile modulus becomes

v, 14
E = Bypl + En(1-5F) 17

and the Poisson’s ratio
3D Vs - _[ ! 18
Yoo =Vion vm(1 27r) (18)

For both 2-D and 3-D random fiber composites,
since we are dealing with isotropic systems, we have
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the intrinsic relation between the tensile, shear moduli
and the Poisson’s ratio of the composites as

E,
G.= T 19
So the shear modulus of the system can be calculated as
well.

In order to compare our new model with other
typical theories as well as with experimental results, we
first summarize several theoretical models in Table 1.
The widely used Halpin-Tsai equations /20/ are
included in the table where the calculation procedures
for the two moduli E; and Er can be found /20/. The
model by Christensen /26/ was developed using a
combined laminate analogy and fiber orientation
function techniques to derive the results. Since the
complete expressions for these elastic properties are
quite long, Table I shows the versions simplified by
Christensen himself. The equations by Manera /9/ are
also approximations derived using the laminate analogy
approach. As a reference, results by Cox /31/ are listed
as well. The equations corresponding to our new model
are also summed up in Table L.

Table II from /35/ and III from /9/ provide some of
the published experimental data for random fiber com-
posites. Conversions have been done by the present
author to change the original data into the preferred
units: The fiber aspect ratio s in Table III is the mean
value calculated using the fiber size provided in /9/. It
has to be pointed out that since a completely random
fiber orientation is difficult to achieve, and partial
alignment of fibers in composite samples is almost
inevitable, especially when the system fiber volume
fraction V; is large, the accuracy of the experimental
data is often only relative.

Figure 2(a), (b) and (c) compare the theoretical
predictions by the various models with the experimen-
tal data in Tables II and III. In Figure 2(a), the agree-
ment between the experimental data and the prediction
by the new model has been excellent, better than those
by either Halpin-Tsai or Christensen and Manera. In
Figure 2(b), however, the new model predicts results
that coincide with the data at a low ¥} level, but not as
well as the prediction by Christensen when V; is
greater. In Figure 2(c), although the predictions by
other theories are closer to the experimental data, the
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Table 1
Various theoretical models

Item Christensen Manera Pan
E2P = LE; +(1+V))En | (B8E; +2En)Vy + 3Em | ZE; + (1 - L)E,
ED = ZLE;+[(1+ 1+ V)|Em | (XEf+ 3Em)Vy + $Em | 5LEf + glw- 35)Em
GeP = ' (ZEs + 3Em)V; + 3Enm HiaaaD]
GP = —g_ﬂr

c 2(1+v30)
V2P = 2 Zvp+ (1= 2Lm
VsD = ‘E/fr"/f +(1- ;ﬁ)”m

~ 01<V;<04
restrictions V<02 2GPa<E, <4GPa
Vm ~ 0.4

Item Halpin-Tsai Cox
B = 3E, + 3Er ;‘:-{'Ef
E3D = ;g'Ef
GP = $EL+ 3Er "'/z{'Ef
G = - it Ey
vel = 2émw — 1 3
B0 = L

c___— 4

Table II Table III

Experimental results for 2-D case by Lee /35/

glass fiber, Ey = 72.40GPa, s = % =675
polystyrene , E,, = 3.24GPa
Vs 0.044 | 0.095 | 0.152
E.(GPa) | 427 |545 [6.48
poly(styrene-co-acrylonitrile) , E,,
\Z; 0.044 | 0.095 | 0.152
E.(GPa) | 4.55 |5.52 |7.72

0.218

8.07

= 3.65GPa
0.218

9.58

results from the present model are still within the error
range specified by Manera in /9/.

It may be useful to mention that the data in Table
IIT covers the results over a higher J;level than those in
Table II, and at a higher V7 level, a complete random-
ness of fiber orientation is more difficult to achieve.
Furthermore, Christensen, trying to find reliable
experimental data to verify his theory, commented in
/26/ that “One set of data for which it appears that care
had been exercised in obtaining a random (two-
dimensional) orientation of the fibers is that of Lee.”
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Experimental results for 2-D case by Manera /9/

fiber, E; = 73.0GPa, v; = 0.25, s = 6600

matrix, E,, = 2.25GPa, v, =04

Vi E.(GPa) | V; G.(GPa) | V¢ Ve
0.171 | 6.872 0.085 | 2.551 0.181 | 0.347
0.174 | 7.221 0.094 | 1.595 0.183 | 0.333
0.232 | 8.184 0.119 | 1.935 0.244 | 0.337
0.236 | 8.142 0.129 | 2.292 0.247 | 0.345
0.265 | 9.749 0.139 { 2.649 0.281 | 0.325
0.269 | 10.168 0.203 | 2.741 0.287 | 0.327
0.330 | 11.662 0.348 | 0.329
0.334 | 12.123 0.351 | 0.319
0.358 | 13.114 0.375 1 0.331 |
0.360 | 11.941 0.380 | 0.324

Therefore, it is justifiable to consider the data in Table
II to be more accurate.

Nevertheless, from these comparisons, one conclu-
sion we can draw is that the predictions by the new
model agree at least as well with the experimental data
as those by the other theories compared.
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Fig, 2:

Relationship between tensile modulus E2° and fiber volume fraction Vy:

(a) comparisons between theories and experimental result by Lee /35/,
(b) comparisons between theories and experimental result by Lee /35/,
(c) comparisons between theories and experimental result by Manera /9/.
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Fig. 3: Theoretical predictions of relationship
between E2D and ¥}

As to the 3-D case, since there are no reported
experimental results for the aforementioned reasons, we
compare only the predictions in Figure 3 by the
theoretical models. It is seen that Christensen’s model
yields the highest value, and Cox’s model the lowest
one, due mainly to its excluding the contribution from
the matrix, and thus only serves as a reference for
comparison. The results from the new model lie in
between the two. It is also learnt from the results in
Figures 2 and 3 that for the same fiber volume fraction

level, the tensile modulus in the 3-D case is smaller

than that of a 2-D composite, when the fiber used is
stiffer than the matrix.

The comparison between the models and the experi-
mental data in terms of the shear modulus for both 2-D
and 3-D cases is illustrated in Figure 4. The three
predictions for the 2-D case in Figure 4(a) seems to be
all in agreement with the experimental data.

For the 3-D case, as only two models, those by Cox
and Pan in Table I, are applicable here, their
predictions are shown in Figure 4(b). Again, for the
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0.5
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Fig. 4: Relationship between shear moduli and fiber

volume fracture V.

(a) comparisons of GZ2° between theories
and experimental result by Manera /9/,

(b) comparisons of G3° between theories.
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same fiber and matrix at the same V; level, G2P is
lower than G2? . Here Cox’s result is also lower for the

reason mentioned above.

Figure 5 depicts the results for the Poisson’s ratios
for both 2-D and 3-D composites, where the predictions
by Manera and Cox are all constants. In the 2-D case,
the results from Manera and Cox provide the lower
bound and that from H-T prediction gives the upper
bound, whereas the prediction from the present model
is in the middle. Although Cox and Manera’s models
yield results closer to the experimental data, this should
not be taken as evidence to disprove other models,
because Cox and Manera’s models are such rough
approximations that they exclude both fiber and matrix
properties as well as their volume fractions.

In the 3-D case, Figure 5(b) illustrates the predic-
tions by Cox’s and the present models. Although we
have no data to validate our prediction, we are certain
that the result by Cox cannot be correct, again because
all material and system parameters are ignored.

4., CONCLUSION

The value of the system fiber volume fraction ¥y in a
composite is a constant, and is in general different from
the fiber area fraction A in a given direction of the
composite, which in most cases is not a constant but a
function of fiber orientation in the composite.

By establishing the relationship between V; and 4y,
combined with the Rule of Mixtures, we can predict,
for both 2-D and 3-D cases, the tensile modulus and the
Poisson’s ratio of a random fiber composite and,
~ consequently, calculate its shear modulus by means of
the constitutive restraints on the three parameters.

For the same fiber volume fraction, the values of
both tensile and shear moduli are found to be higher for
a planar composite than for a 3-D case, both with
random fiber orientation.

This new model has been proved as good as other
existing models, but simpler with no limit, unlike some
models, on the value of the fiber volume fraction V.
Moreover, the present theory can be applied to other
cases besides random fiber orientation, as long as the
fiber orientation density function can be obtained.
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(a) comparisons of v.© between theories

and experimental result by Manera /9/,
(b) comparisons of v3P between theories.
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