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ABSTRACT

For structural and load-carrying applications, more detailed information about
woven fabrics, which are increasingly used as reinforcements for composites, is desirable
for design purposes. This paper investigates the issues related to woven fabric strength.
First, the direction dependence or anisotropy of tensile strength as well as the breaking
strain and initial modulus of the fabrics are examined experimentally. A harmonic
expression is then adopted to approximate the experimental results so that this tensile
strength anisotropy can be expressed analytically. Moreover, the Tsai-Wu failure cri-
terion is used, assuming it is valid for woven fabrics, at least at the first quadrant where
failure stresses are all tensile. Unknown coefficients in the failure criterion are deter-
mined based on the experimental results. Fabric shear strength is then predicted based
on the measured uniaxial tensile strengths of the fabric at the principal and off-axial
directions. Influences of various directions of the off-axial tensile test on predictions
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of fabric shear strength are also studied.

Orthogonal or biaxial woven fabrics exhibit good
dimensional stability in the warp and weft directions
and offer the highest yarn packing density in relation
to fabric thickness. Also, woven fabrics provide more
balanced properties in the fabric plane than unidirec-
tional laminae; the bi-directional reinforcement in a
single layer of a fabric gives rise to enhanced impact
resistance. All these advantages along with ease of han-
dling and low fabrication cost as well as light weight
have made these fabrics attractive for structural appli-
cations and reinforced composites. But for these ap-
plications, a better understanding of the mechanical
behavior of woven fabrics is indispensable.

In a previous paper [14], we dealt with the in-situ
behavior of and interactions between yarns in woven
fabrics under tension and their effects on the ultimate
tensile strength of the fabrics. Much of our effort fo-
cused on the effects of the statistical variations of yarn
properties on fabric tensile strength. By incorporating
these factors into the analysis, we were able to predict
fabric tensile strength in the principal or warp and fill-
ing directions under uniaxial and biaxial extension.

Moreover, woven fabrics are well known for their
property-direction dependence or property anisotropy.
An experienced tailor understands this well enough to
choose different “‘grains™ for different pieces of a gar-
ment, 50 that properly draped, elegant apparel can be
made. For structural applications, however, this an-
1sotropy will present a problem of irregularities in terms
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of performance or load-carrying capacity. One objec-
tive in our work is to evaluate and predict this property
anisotropy.

Woven fabrics are not only highly anisotropic, but
also dimensionally changeable, very susceptible to ex-
ternal loading and to its historical conditions. The im-
portant fabric properties critical to structural applica-
tions include tensile strength, in-plane shear strength,
and normal compressive (in the thickness direction)
strength, as well as in-plane compressive or buckling
strength.

Predicting fabric strength has significance both
theoretically and practically, because except for uni-
axial tensile strength, experimental determination of
all other strengths is tedious, with no convenient test
methods and instruments available, and very costly.
Sheet-form matenals, whose flexural and torsional ri-
gidity are very low, particularly require very elaborate
devices to measure shear and buckling strengths.

Kilby [7] is probably the first researcher to deal with
the mechanistic anisotropy of a woven fabric. He de-
rived the so-called generalized modulus of a fabric, ex-
pressing the fabric tensile modulus in relation to the
test direction. In this study, however, we will focus on
the anisotropy of fabric strength. Following earlier work
[14], in which we proposed a more realistic approach
to predict fabric tensile strengths at the principal di-
rections under uniaxial and biaxial extension, we pre-
sent in this study an attempt to investigate the direction
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dependence or anisotropy of the tensile strength of a
woven fabric using a technique described by Cheng
and Tan [2] based on expenimental results.

Furthermore, by using the Hill-type failure criterion
[5. 21, 22, 23] widely applied in studying fiber rein-
forced composites [1, 6, 15], wood materials [8, 11],
and paper and geotextiles products [9, 10, 16, 17, 18,
19], we attempt to predict the shear strength of woven
fabrics using measured tensile strengths.

Predicting Tensile Strength Anisotropy

One approach of strength prediction is to use the so-
called failure criterion to derive other strength terms
based on given values of strengths tested in a few par-
ticular directions. Of the various failure criteria for an-
isotropic materials, only three [23] have received wide
attention, those of Hill [5], Hoffman [6], and Tsai-Wu
[22]. Both Hill's and Hoffman’s theories are limited to
orthotropic materials with plastic incompressibility. In
this respect, the Tsai-Wu theory has wider applicability.
The basic assumption for the Tsai-Wu theory is that
there exists a failure surface in the stress space, which
can be expressed in terms of a stress tensor polynomial
function. In general, however, to apply the function,
one has to know the compressive and shear strengths
of the material in addition to its tensile strengths.

Cheng and Tan have proposed an alternative tech-
nigue [2], using a harmonic cosine series to represent
the off-axial tensile strength of an anisotropic polymeric
sheet or plate at any direction. That is,

X, =(ZChycosn,)" , (1)
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where 1 = 0, 2, 4, . .., and X, is the tensile strength
at direction ¢ as defined in Figure 1. C, are the factors
to be determined using given or experimentally ob-
tained tensile strength values in a few particular direc-
tions where tests are easy to do. Higher prediction ac-
curacy using Equation | can be achieved with more
pre-tested strength values, so that more C,, factors can
be derived.

To demonstrate Equation |, we provide a practical
example. The same five fabrics in reference 14 are used
here: their properties are listed in Table 1. The uniaxial
tensile strengths of fabric strips cut at seven different
directions ¢, as illustrated in Figure 1, where L indicates
the warp and T the filling directions, are measured ac-
cording to the ASTM D1682-65 cut strip method at a
cross-head speed of 200 mm/min, and the testing re-

FiGuRE 1. Coordinate system (a) and testing directions (b) on a fabric.

TasLE L. Data of the fabric samples.®

Fabnic 1, Fabnc 2, Fabric 3, Fahbric 4, Fabric 5,
100% PET-F 100¢% acetate-F 100% acetate-F 100 cotton-5 100% cotton-5
plain plain satin plain plain
Fabric cover factor,
¥arm
iz
Warp 7.14 7.46 Bl 16.87 16.28
Welt 874 12.55 15.02 14.21 14.67
Yarn strength,
Mitex
Warp 1.155 0.365 0.386 0098 0.0949
Wefdi 0.764 0.091 0.093 0.073 0.079
Fabric strength,
(M thread)
Warp 4.40 2.09 1.84 3.06 314
Wefi 378 387 4.04 284 3.64
Fabric strength,
(N/ftex)
Warp 1.341 0,537 0.461 0.077 0.085
Weft 0.768 0.120 0.129 0069 0.083

*F is the filament yvarn and 5 the staple varn,
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sults are provided in Table II. As we have seven dif-
ferent directions, Equation 1 can be expanded into

Xy =Gy + Gocos 2¢ + C, cos 4¢ + Cg cos 66
+ Cy cos 8¢ + Cipcos 10¢ + Tz cos 12¢)7"
(2)

with seven unknown C, factors.

By substituting the tested strength values at direction
¢ in Table II into Equation 2, we can form seven si-
multaneous equations from which the seven unknown
C, factors can be determined. Equation 2 can then be
used to predict tensile strength at any direction ¢ be-
sides the seven directions already tested.

The C, values for the five different fabrics are thus
calculated and also provided in Table 11. Since a fabric
can be treated as an orthotropic matenal with property
symmetry about its two principal directions, we only
need to plot the prediction in the range of 0 = ¢ =
*h, i.e., quadrant | in a 2-D coordinate system.

Figure 2 shows the results from both the expen-
mental data and the predictions using Equation 2 for
fabric 1. For concise plots, all data are normalized rel-
ative to their corresponding maximum values. It is ev-
ident here that fabric 1 possesses the highest tensile
strength in the longitudinal or warp direction. The plot
also 1llustrates the anisotropic nature of fabric tensile
strength more clearly than the numerical data in Table
II. Further, we see from Figure 2, as well as from Figure
4 later, that fabrics are uniquely different from ordinary
anisotropic materials, whose failure curves are very
close to an ellipse. Fabric failure loci undulate irregu-
larly, due certainly to the fact that the structure consists
of discrete yarns interlaced at two orthogonal direc-

tions. Possible yarn-yarn relative movements and in-
teractions at the crossing points are likely responsible
for this irregular failure curve. Note that for such an
irregular shape, it is perhaps more advantageous to ap-
proximate the curve using a harmonic expression, as
in Equation 2, than a polynomial function of a regular
failure criterion.

0.6 —_—
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FiGure 2. Fabric tensile strength anisotropy determined
experimentally and analytically.

To understand the contribution of each harmonic
component in Equation 2 toward overall system an-
isotropy, we have constructed Figures 3a and b for fab-
ric 1, where the numerical number #n indicates that the

TaBLE II. Tested fabric strength versus direction.

Breaking load, 9.8-N

Degrees Fabric 1 Fabric 2 Fabric 3 Fabric 4 Fabric 5
0e, L. 43.95 (0.60)8 19.45 (0.22) 26.70 (0.38) 20.59 (1.26) 2117 (0.95)
15° 34.27 (0.8T) 11.03 {0.62) 15.84 (0.33) 10,19 (1.12) 9.97(1.32)
30" 35.73(1.78) 12,87 (1.06) 19.61 (1.68) 14.01 (0.36) 15.03 (4.00)
45° 23.08 (1.46) 15.10 (0.49) 21.08 {0.26) 16.32(1.27) 17.74 (2.47)
60~ 18.01 (0.92) 13.88 (0.63) 15.47 (0.60) 12.16 (0.90) 12.58 (0.59)
75¢ 14.51 (1.35) 11.88 (0.42) 13.12 (0.79) .57 (0.87) .06 (1.46)
3?“, T 36.30(1.14) 20,14 (0.70) 27.63 (0.32) 16.25 (0.60) 20,07 (0.37)
Ca 1.83 1.48 1.56 1.6 1.68
e 0.74 =0.06 016 0.19 0.20
Cy —0.16 —0.02 0.0 0.17 0.22
Cs —0.37 0.03 =0.13 =0.03 —0.08
Ci —0.33 =0.31 —0.40 —0.47 —0.57
Cao —0.27 0.01 —0.05 —0.03 —0.09
Ci —0.24 (.14 ~0.16 —0.23 —0.30

* Data in the parenthesis are standard deviation values.
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FIGURE 3. Contributions of various harmonic components: (4) first four components, and (b) first five, six, and all seven components.

first # components in the right hand side of Equation
2 are used in constructing the curve. We can conclude
that because the first constant coefficient ), describes
the isotropic element of fabric mechanical behavior,
so the corresponding curve in Figure 3a is a perfect
circle representing the direction-independent element
of strength. Adding in the harmonic components 2 and
3 makes the curves more elliptical, with the longer axis
in the longitudinal direction. Tensile strength is highest
in the longitudinal direction, and then decreases
monotonically as the bias direction ¢ increases to 90°,
coinciding with the filling or transverse direction. The
harmonic components 4, 5, and 6 change the ellipses
into more irregular curves, reflecting the instabilities
of the fabric structure, Finally, with contributions from
all seven components, a complete strength-direction
dependent behavior of the material is depicted. Since
most ordinary anisotropic materials yield an elliptical
failure surface, it is intuitive to conclude that compo-
nents 4, 5, 6, and 7 represent intrinsic properties unique
to woven fabrics.

Figure 4 compares all five fabrics in terms of their
tensile strength anisotropy. Fabrics I, 4, and 5 are
strongest in the warp direction, whereas fabrics 2 and
3 have maximum tensile strength in the transverse or
filling direction. No maximum tensile strength is
achieved in the bias directions for any of the fabrics.
If we take the closeness of a curve to a circle as an
indicator of the strength isotropy of the material, a
curve identical 1o a circle would be an ideally isotropic

material. The curve for fabric 1, which has the least
strength drop in direction ¢ = 15° and hence appears
more circular, seems to be relatively isotropic among
all the fabrics.

=
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0.2 0.4 0.6 ¢.4 af

FiGUre 4, Companson of five different fabrics.

Additionally, we compare the anisotropy curves of
the strength, breaking strain, and initial modulus for
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fabric 1 in Figure 5, using data provided in Table III.
Again, all data are in the relative scale normalized by
their respective maximum values. Note from the figure
that although the relationship between strength, break-
ing strain, and modulus seems direct, the anisotropic
characteristics are not similar or not “in phase.” In
other words, the isotropy level of one of the three varni-
ables will not directly reveal the isotropy levels of the
other two. Nevertheless, a certain correspondence still
exists between the three curves. For instance, fabric
breaking stain is the highest at a direction of around
¢ = 457, where the fabric initial tensile modulus 1s at
its minimum value, meaning that the fabric is most
stretchable at this direction; this is known to be true
for most woven fabrics. The fabric is least stretchable
close to the transverse direction, as shown in the figure
where the initial modulus is at its maximum,

Predicting Shearing Strength Based on
Uniaxial Tensile Strengths

As we mentioned in the introduction, instrumental
measurement with high accuracy of shear strength for

.
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FIGURE 5. Comparison of anisotropy of strength, breaking
strain and mitial modulus,

/

the anisotropic sheet materials such as woven fabrics
is difficult and costly. Theoretical prediction of this
strength based on the experimental data from uniaxial
tensile testing thus becomes a very attractive alterna-
tive. One such approach 1s to use the Tsal-Wu theory
on material failure criterion.

Tsai-Wu [22] assumed that there exists a failure sur-
face /(=) for an anisotropic material in the stress-space
o in the form

flo) = Fio; + Fyoio; = 1 (3)

where /, j, k= 1, 2, 6, and F; and F; are the strength
tensors of the second and fourth rank, respectively.
When [{¢) < 1, there will be no failure, whereas when

fila) = 1, the material fails. The failure surface of

Equation 3 is actually an ellipsoid when the following
restrictions are satisfied [19]:

FiFes =0 (4)
Faalge = 1) (5)

and
FiuFn—Fh=0 (6)

For fixed values of shear stress o, the eguation
scribes ellipses in the oy-a; plane. For orthotropic sheet
materials, the analysis is restricted to a plane stress state,
so Equation 3 can then be reduced to [17]

Fy 67 + Foaod + 2F o0, + Fegrs = | (7

Let us assume that such a failure criterion is also valid
for materials like woven fabrics; we can thus use this
failure criterion to estimate fabric shear strength. If we
choose the coordinate system in Figure 1, we will have

O S0, Or=9d&y, 5= Tor= T

To determine the four coeflicients F; according to
Tsai and Wu [22], we need to know the uniaxial tensile
and compressive strengths in the L and T directions,
and the pure shear in-plane strength as well as the uni-
axial tensile strength of the material in a bias direction.

As Rowlands et gf. [17] pointed out, however, Equa-
tion 3 implies equal uniaxial strengths in tension and
compression for the material concerned. This limita-
tion is the result of an assumption associated with the
theory that hydrostatic stress has no effect on material

TaBLE 11l Breaking strains and initial moduli versus directions (for fabric 1).

o0, L 15° 30° 45° B0° 75° a0, T
Breaking strain, % 49.11 51.97 £4.90 52.28 39,53 2259 24 82

(3.41) (3.16) (2.97) (3.10) {1.26) (1.67) (1.26)
Initial moduli, GPa 1.59 0.65 0.25 0.08 0.17 0.57 288

{0.640) {0.18) (0.47) (0.28) {0.19) (0.21) {1.29)

o




we strength. Since theories that predict equal tensile and

compressive strengths are restricted only to certain
materials, Norris [11] avoided this problem by making
F\, and F: functions of stress, instead of constants.
He then divided the stress plane into four guadrants,
so that the unknown coefficients could be derived spe-
cifically for each guadrant with different stress char-
acteristics. In our particular case, in order to focus on
predicting fabric shear strength without the involve-
ment of fabric in-plane compressive or buckling be-
havior, we will only consider the first quadrant of the
four, where the stresses g, = 0 and o7 = () are both
tensile in nature.

Denoting the uniaxial tensile strengths of the fabric
in both L and T directions as X and Y, respectively,
since the fabric strengths are on the strength surface
defined in Equation 7, this implies that in the first
quadrant,

R 1
E

e (8)

and
1
I, =?

The various Hill-type predictions differ from one
another only by the manner in which the coefficient
F\7 is determined [17]. Here, we choose Morris’ result

[1t]:

(9)

Fiz=
1z 1YY

(10}
It is evident that F,» thus defined obeys the constraint
in Equation 6.

The additional equation to derive the coefficient F,
can be established according to Pouyet et al. [16] by
completing an off-axis test applying tensile stress equal
to the strength U7 in the bias direction ¢. By expressing
all the resulting principal tensile and shear stresses oy |
oy, and 7pp in terms of Uf; and ¢, Equation 7 can be
expanded into

U[F,, cos® ¢Fs sin'

4+ (2F; + Feg)sin gcos p] =1, (11)
from which the coefficient Fos can be determined.
Then, fabric shear strength 5 can be readily evaluated
as [11]

S= (12)

5-

Since S cannot be negative, this relation, combined
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with Equations 4 and 5, implies that the coefficients
Fi1, Faz, and Fgy must possess positive values. Caleu-
lated results for the five fabrics are provided in Table
IV, including predictions of fabric shear strength 5.

TasLE IV, Coefficients of the strength tensors of the fabrics.

Fabric 1 Fabric2 Fabric3 Fabric4 Fabrc3
Fu, 19 5.18 26.43 14.03 23.59 22,31
Fa, 1077 7.59 24.65 13.10 3787 24,83
Fa 10t =313 —1276 —678. —1484 -—I11.77
Fye, 1077 6G8.59 16E.93 #3.52 143.69 120.60
X 98N 43,95 19.45 26.70 20.59 i b
¥,0.8-N 36.30 20,14 27.63 16.25 2007
508N 12.08 7.69 10.94 .34 9.11

Recall that the values of X and ¥ can be predicted
theoretically using our earlier results [14]. If we can
somehow predict off-axial tensile strength U7, as well,
we can then derive fabric shear strength S based on the
varn properties and fabric structure without relying on
uniaxial fabric tensile tests.

In Equations 11 and 12, note that the fabric shear
strength § predicted from the equations will not nec-
essarily be the same when U tested at a different di-
rection ¢ is substituted, due to the strength anisotropic
nature of woven fibers. This is shown clearly in Table
V, where the shear strengths S, for fabric 1 as a function
of both U/, and ¢ are calculated, and they show a non-
monotonic relation with both £7, and ¢. This again is
likely caused by fabric structural irregulanties and yarn-
varn relative movement during tensile tests in bias di-
rections, discussed earlier. Unfortunately, we don’t
have any justification at present to accept or reject any
one of the five predictions.

TasLE V. Effect of ¢ on the prediction of fabric
shear strength (for fabric 1)

é 15° 30° 45" B 75¢
U,.98-N 3427 3573 2308 1801 14.51
5, 98N 1197 1827 12.08 8.27 3.89
SJU, 0.35 0.51 0.52 0.46 0.27

There have been several experimental attempits [12,
20]. using the tested off-axis tensile properties at ¢
= 45°, to estimate fabric shear properties. Equations
11 and 12, however, indicate that although shear
strength is related to off-axis tensile strength, the re-
lation is not single-valued. Table V also contains the
ratios 5,/U, of the predicted shear strength and cor-
responding off-axis tensile strength, If we use this ratio
as an indicator of the closeness between S5, and U, we
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can conclude that ¢ = 45°, which vields the highest
54/ U, ratio, is probably the optimal direction at which
to test off-axis tensile strength to approximate the shear
behavior of the fabric. Also, we can conclude from the
data that the shear strength of woven fabrics is lower
than its lowest tensile strength at any direction.

Conclusions

The tensile strength anisotropy of a woven fabric
can be approximated by a harmonic expression, and
the accuracy of the approximation can be improved
by increasing the number of harmonic components in
the expression. The first constant harmonic component
corresponds to the isotropic level of fabric tensile
strength. The first two lower order components depict
an elliptical shape of the failure surface, which resem-
bles those of ordinary solid anisotropic materials. Yet
for woven fabrics, higher order components are nec-
essary to depict inherit irregularities in the fabrics, An-
isotropic characteristics also exist in fabric breaking
strains and tensile moduli. The loci of these mechanical
properties, however, are generally not similar.

By assuming that the Tsai-Wu failure criterion is
valid, at least in the first quadrant in a stress plane
where both the stresses in the fabric principal directions
are tensile, fabric shear strength can be obtained using
the theory. Fabric shear strength is lower than fabric
tensile strength tested at any direction, but off-axial
tensile strength at ¢p = 45° is the closest approximation
of predicted shear strength compared to tensile
strengths at any other direction.
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