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This paper presents a thorough study on the prediction of the elastic-material constants ratios
of blended short-fiber yarns, based on the theory developed by the author for yarns of a
single fiber type by considering the structures as transversely isotropic and combined with
the techniques used in dealing with hybrid composite materials. The mean tensile strengths
of the blended staple-fiber yarns are also predicted, with the exclusion of the statistical and
hybrid effects, which will be dealt with in a separate paper because of their extreme complexity.
The so-called minimum blend ratio, below which the mean yarn strength will not follow the
rule of mixtures, and the critical blend ratio, below which the mean yarn strength will be
weakened rather than strengthened owing to the addition of the reinforcing fibers, are
calculated, and the variables involved are discussed. Finally, the effects of the breaking strains
between the blending-fiber types on the yarn properties are investigated. All results are
schematically illustrated and the necessary parametric studies are provided.

1. INTRODUCTION

Fiber blending has for a long time been practiced in textile processing. By mixing fibers of
different types to form textile yarns, many advantages are achieved, such as property
compensation or reinforcement between fibers, cost reduction without significant sacrifice
of yarn performance by partially replacing expensive fibers with less expensive ones, and
cross-dyeing effects due to the different dye affinity of two fiber types. Owing to the
importance of blended-yarn structures, it is desirable to understand and specify their
mechanical behavior in order to realize the potential of the blending process.
Investigation of the mechanics of blended-fiber yarns has been the topic of many
studies [1-6], and most of these studies are focused on the prediction of the tensile strength
of the yarn as the most important yarn property with practical significance. In view of the
complexity of the mechanics of staple-fiber yarns even with a single fiber type, the presence
of two fiber types in a structure adds a formidable dimension to the theoretical analysis.
‘There are several aspects that make hybrid structures much more difficult to analyze.
In hybrid yarns in which two different types of fiber are blended together to form a system,
the difference in their contributions towards the over-all behavior of the structure, due to
the diverse mechanical properties of the constituent fibers, has to be considered. Secondly,
the interaction between the two constituents will alter the nature of yarn behavior, especially
during fracture. Inclusion of this interaction in analysis has been proven to be very
challenging. One phenomenon associated with this interaction in a blended structure that
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greatly complicates analysis is the so-called ‘hybrid effect’, defined as a positive or negative
deviation of a certain mechanical property from the rule-of-mixtures behavior [7].

The present author and his colleagues [8] have carried out a study on the computer
modeling of the strength and fracture behavior of blended continuous-filament yarns.
Based on such concepts as chain-of-subbundle, the changing lateral constraint between
filaments due to twist and its effect on filament strength, and the load-sharing process
between the broken and still-surviving members during yarn breakage, a new statistical
approach was proposed, and a discrete computer model was introduced to predict the
strength and fracture behavior of a blended continuous-filament yarn. Recently, we have
also completed a study [9] trying to explain the cause of the ‘hybrid effect’ in a blended
yarn.

On the other hand, research on the so-called hybrid composites, materials made by
combining two or more different types of fiber in a common matrix, has become increasingly
active [7,10-13]. The similarities between the two structures are many, except that, in a
textile yarn, fibers are bound together through a frictional mechanism brought about by
twist, whereas, in a composite, it is the chemical bonding that causes fibers to adhere to
the matrix material. Many approaches and techniques in the hybrid-composite area can
hence be applied with necessary modifications to the study of blended yarns.

To begin with, this paper deals only with the prediction of the elastic properties of
blended yarns. The present study is intended to look into the problems in the mechanics of
blended staple-fiber yarns on the basis of the results of the property predictions provided
by the author previously [14-17] for staple-fiber yarns made of a single fiber type. Using
these predictions and the approaches employed in hybrid-composite studies, we can calculate
the corresponding blended-yam properties for a given blend ratio and yarn twist and given
fiber types and fiber orientations. Some of the yarn properties, such as the shear moduli in
the longitudinal and transverse directions and the tensile modulus in the transverse
direction, although very important parameters in studying yamn behavior and the behavior
of fabrics made of the yarns, are very difficult, if not impossible, to determine experimentally,
and the theoretical prediction seems to be the only convenient means to obtain them.

In addition, the mean yarn tensile strength is predicted in this study according to the
rule of mixtures. The more difficult issues, such as the interactions between the fibers, the
local stress redistribution due to fiber breakage, the hybrid effect, and the statistical aspects,
are excluded. These important yet complex problems have been analyzed by Pan and
Postle in a separate paper [9]. The minimum and the critical blend ratios of the reinforcing
fiber are determined, and the effects of fiber-breaking strains are also investigated. In
addition, investigations are carried out in this study to examine the effects of the blend
ratio, yarn-twist level, and fiber properties on these system parameters.

2. THE ELASTIC-MATERIAL CONSTANTS OF A BLENDED STAPLE-FIBER
YARN

First of all, as theoretically demonstrated by the present author [15], the effect of the fiber
slippage at fiber ends in staple-fiber yarns during yarn extension becomes negligible when
the yarn-twist level is reasonably high. Hence the fiber-slippage influence will be excluded
in the present study, where focus on the practical twist range is adequately high. Interested
readers can refer to the earlier paper [15] for treatment of the fiber-slippage effect at a low
yarn-twist level.

The key variable in determining the properties of a hybrid fibrous system is the
concentration of each fiber type in the system. There are two slightly different indices to
specify the fiber concentration. The first one is the fiber-volume fraction, and the second
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one, more commonly used in the textile industry, is the blend ratio. If the yarn we are
dealing with is a blended yarn with blend ratio B, for fiber type a and B, for type b, the
corresponding fiber-volume fraction V, for fiber type a is then given by

V.=BY, ¢))

and V, for fiber type b by:
V,=B)V, 2)

Since B, + B, = 1, so that
V4V =V, 3)

where V, is the total fiber-volume fraction of the yam, which is a function of the yarn-twist
factor T, and for a particular yarn studied previously [4], we have:

V, =0.7(1-0.78¢

=0.1957, )

C)]

It has become widely accepted that the elastic moduli for hybrid structures follow the
rule-of-mixtures behavior [18], that is, the resultant properties of the structure are the
mean values of the volume-fraction-weighted properties of the constituents. More
specifically, for properties in the longitudinal directions, the rule of mixtures can be used
directly, whereas, for those in the transverse directions, the inverse rule of mixtures has to
be applied. The elastic properties of a blended yarn can thus be predicted by using the
results provided previously [14] of the elastic properties for a yarn of a single fiber type.
Of the several elastic properties predicted [14] for a yam treated as a transverse isotropy,
the four major constants are shown here. If fiber type a as the reinforcing fiber is blended
with fiber type b, the longitudinal tensile modulus of a blended yarn can be expressed in
terms of the blend ratio for fiber a as:

E = [BaEa +(1_Ba )Eb]vfnlnlo &)
where E_ and E, are the tensile elastic moduli for fiber types a and b, respectively, and

n =1 tanh (ns)

t

(6)
ns

is called the length-efficiency factor, reflecting the effect of a definite staple-fiber length,
where s is the so-called fiber-aspect ratio, s = I/2r,, the ratio of the fiber length to its
diameter. The parameter n is called the cohesion factor, an indicator of the gripping effect
of the yarn structure on each individual fiber, and was defined [14] as:

G, 2
n= )
E, In2
where G, is the yarn longitudinal shear modulus and E, the fiber tensile modulus. For the
hybrid case, the over-all value of the fiber tensile modulus can be calculated by using the
values of each component as:

E, =[B,E,+(1-B,)E,]V, ®8)
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Moreover,

3 (1+cos 2q)
4 4(1 +cos2g+ cos’ 2q) ®

19

is the so-called fiber-orientation-efficiency factor representing the effect due to fiber
alignment or obliquity in the yarn. The parameter q is the nominal yamn-surface helix
angle defined by Hearle [19] as:

_ N 40n

where p, is the fiber specific weight.
For convenience of discussion, Equation (5) can be rewritten in the form of a ratio of
the moduli as:

E E
“t=|B,—2+(1-B,)|V.nn
E, { E, ( )} tllMe a1

This ratio is an indicator of the reinforcing effect of fiber a on the tensile stiffness of the
blended yarn. The transverse tensile modulus follows the so-called inverse rule of mixtures
as:

1 _BY, (-B)V
ET Ea'l‘ E

bT

(12)

where from earlier work [14]
E,= VfEinanO’ (i=ab) 13)

is the transverse tensile modulus of the yam made of a single fiber type i, and T, is the
fiber-orientation-efficiency factor associated with the yarn transverse direction, given by:

_ 8 (1/2q-1/4sin2q)’
Mo = (14)

Again, this result can be expressed in the form of a modulus ratio:

E E B (1-B)
Tb . Tb Ta 4 22 (15)
ET En nITIZe nln29
Similarly, the longitudinal shear modulus is:
1 _BY, (1-B)V
= + (16)

GTL GaTL GbTL
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where from earlier work [14]
Gire = V.EN M 56, (i=ab) a7

and the corresponding orientation-efficiency factor

1 7(1-cosq)sin’ 8sin’
L s = q). 7 q :
Mo 6(1/2q-1/4sin2g)°  3m(1-cosq)(1+cos q)
(4 -3cosg - cos® q) (18)

=+

6(1/2¢-1/4 sin2g)(1+cos q)
Alternatively, Equation (16) can be expressed in the modulus-ratio form:

E _E 8 (1-8)

(19)
GTL El nlnlzo 77117129

The major (in the L-T direction) Poisson’s ratio of the blended yarn is given by:

Vir =B Vv, + (1 -B, )vabur (20)
where we also have from earlier work [14] that:
+_Sq
sin .

Var = (i=a,b) 2D

2(1-cos’ ¢)(1/2g~1/4 sin2q)

As indicated in Equation (21), the yarn Poisson’s ratio is determined by the yarn-surface
helix angle ¢ alone, independently of the fiber mechanical properties when we ignore the
Poisson’s effects of the fibers themselves. We therefore have:

Vyr = Vyr (22)

or
V= (Va + V;)vau' =V (23)

that is, fiber blending will not alter the Poisson’s ratios of the yarn if we neglect the fiber
Poisson’s effects.

It has to be pointed out here that, as previously demonstrated by the present author
[16], the yam-surface helical angle defined in Equation (10) was derived on the basis of a
filament structure. Modifications are therefore necessary when applying it to a staple-
fiber-yarn structure. It was also shown [16] that a satisfactory prediction of the well-
known fiber-obliquity effect in the yarn longitudinal tensile modulus can be achieved if 2¢
instead of ¢ is used in Equation (9), as has already been done; this observation, however,
was found to be valid only for the yarn longitudinal tensile properties so that no such
modification is needed in equations relating other properties.

Furthermore, to simplify the present results for practical applications, both fiber-
orientation factors, associated with the longitudinal tensile modulus defined in Equation (9)
and with the Poisson’s ratio in Equation (21), can be approximated by a function cos?q.
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The comparisons before and after the simplification, provided in Figures 1 and 2,
respectively, show reasonably close agreements between the pairs. With regard to the
orientation factors associated with the longitudinal shear modulus and transverse tensile
modulus, although it was shown previously [14] that, when the yarn-twist factor increases,
both moduli follow paths similar to the exponential functions and approach their own
asymptote as a result of three such competing factors as the fiber-volume fraction, the
fiber-orientation-efficiency factor, and the fiber-length-efficiency factor, it is difficult to
find simple approximations for the orientation-efficiency factors.
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Fig.1  Comparison of the original and simplified orientation-efficiency factors /
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‘Fig.2  Comparison of the original- and simplified-orientation yarn Poisson’s ratios V,
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3. TENSILE STRENGTHS OF BLENDED STAPLE-FIBER YARNS: A NON-
PROBABILISTIC APPROACH

As mentioned before, the strength prediction of a blended staple-fiber yarn is a task of
tremendous complexity, since it is dependent on many statistical factors of a high degree
of uncertainty, such as the structural variations and the interactions between the distinct
fiber constituents in the yam. For instance, since the fiber distribution is not constant
along the yarn cross-sections, blended staple-fiber yarns from even the same package will
possess different strengths. Yet, for most industrial applications, the statistical mean
strength can still provide helpful indications of the yarn quality and durability.

To simplify the problem further, we start with a yarn in which each fiber is assumed to
be of uniform strength along its length. We also assume linear stress—strain relations for
both fiber a and fiber b such that their tensile moduli are constants. Suppose further that
fiber type a has a lower breaking elongation than type b. As a result, the ultimate tensile
strength o of a blended yarn can again be predicted on the basis of the rule of mixtures as:

O-yu = (O-auVa +£auEbe)nln|9 (24)

where o, is the ultimate strength and €_ is the failure strain of the fiber type a.

It has already been reported by Coplan (1], on the basis of his empirical speculation,
that three corrections have to be made in order to account for the differences between the
fiber strength and the experimentally determined strength of a yarn made of that fiber.
The first correction is due to fibers falling in the open fringe of the yamn cross-section. The
second correction is caused by the effect of the ‘weakest-link’, and the third accounts for
the fiber obliquity due to the fiber-helix orientation. The theory developed by the present
author [14] has, in fact, theoretically derived the factors corresponding to each correction.
The fiber-volume fraction V, < 1 represents the first correction, the fiber-length-efficiency
factor M, < 1 reflects the ‘weakest-link’ effect, and the fiber-obliquity effect is accounted
for by the fiber-orientation-efficiency factor n , < 1. More importantly, this theory has also
established the interconnection between these three factors and pointed out that the yamn-
twist factor T is the key variable that affects the contributions of all three factors.

Equation (24) can be further expressed in terms of the blend ratio B, as:

GY“ =[G.*“'Ba +e,E (I—Ba)]vfnlnle (25)

au"b

or in the form of a strength ratio:

o e E E
X [Ba +__‘“‘_b(1 - B, )}anl‘r]w = I:B“ +——b—(1 - B, ):IVFT]ITIIO (26)
c ) E

au au 2

Here, owing to the linear fiber stress—strain relationship, o, /€., = E_has been applied.

4. THE MINIMUM AND CRITICAL BLEND RATIOS FOR THE
REINFORCING FIBER

By blending a new fiber type (the reinforcing component) with the existing fiber, we could
improve the properties of the final product. However, this property improvement will not
be achieved unless the amount of the reinforcing component exceeds a certain limit. There
are actually two such limits, which are the characteristic values of a specific system. Let us
take the yarn strength as an example. The conclusions, of course, are valid for other
properties.
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Similarly to the treatment in a hybrid composite, we can derive a minimum fiber-blend
ratio B, for fiber type a. If the amount of the reinforcing component, B,, is too small to
be taken into account, the yarn strength will become:

o, = o, (1-B,)Vin 1, @n

where G, is the ultimate strength of fiber type b.
Equating Equations (25) and (27) yields the minimum fiber-blend ratio B, for the
reinforcing component:

o-bu E_b_
_ crb“—s:m‘Eb _ 0o, E,
amin O'a“ +Gb“ -EauEb 1+9,"L_£b_ (28)
(o] E

Here o, /¢, =E, has again been used. It is indicated in this equation that the minimum
fiber-blend ratio for the reinforcing component is independent of the fiber-volume fraction,
fiber size, and yarn twist (ﬁber-orientation-efﬁciency factor). Also note that the rule of
mixtures, Equation (25), is valid only when B,2 B_ .

Furthermore, Equations (25) and (27) show that the strength of a blended yam, even
with the existence of reinforcing fiber a, can be lower or higher than the strength of the
yarn made of the weaker fiber type b (see Equation (32)) alone. The strength of the blended
yarn will be higher only when the blend ratio of fiber a exceeds a critical value B, whose
value can be determined by the following.

In order to make

o-yu = [o-auBn +‘£auEb(1— Ba)]‘/fnlnlﬂ 2 o-buvfnlnw (29)

the critical blend ratio of fiber a is thus deduced as:

Ow _E
B = o-bu _eauEb = Gnu En
= o-au - 8auEb - Eb— (30)
Ea
It is easy to see that always
1 > Bacri( Z Bamin 2 O (31)

This gives us from Equations (30) and (31) the restraints on the fiber properties, such as:

o E
L E <E, o, <0 (32)

b a b au
c. E "

ay a

These conditions have to be met in order to realize the reinforcement. More specifically,
in order to reinforce a structure, the reinforcing component has to possess not only a
higher breaking strength but also a higher tensile modulus than the existing component.
It may also be seen from Equations (28) and (30) that the ratios of the strength, 6, /0,
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and tensile modulus, EJE, of the two fibers are the key parameters in determining the
reinforcing effects.

5. CALCULATION AND DISCUSSION

The fiber properties used for calculation are listed in Table I. For convenience, we assume
that both fibers have the same radius, length, and specific density p,as listed.

TableI
The Fiber Properties Used for Calculation
Item Typical Value Unit
Fiber radius r, 3x 1073 cm
Fiber length/, 3.0 cm
I
Fiber aspect ratio s = —— 500
2r,
Fiber specific densityp, 1.31 glem?

By using Equations (4), (8), (9), (10), (18), and (23), the related yarn parameters at
three levels of the twist factor Ty are calculated and shown in Table II.

Table II
The Yarn Parameters Predicted for Other Calculations
T, Jiex turns/cm 20 30 40
g (deg) 13.28 19.37 25.10
m, 0.980 0.984 0.990
UM 0.947 0.890 0.820
Nz 0.098 0.139 0.168
vV, 0.689 0.698 0.700
v 0.988 0.971 0.944

First, let us examine the relationship between the modulus ratio E /E, and the blend
ratio B, at three levels of the twist factor T . By using Equation (11), this relationship can
be plotted as shown in Fig. 3, where fiber a is taken as the reinforcing fiber with a higher
tensile modulus, E, = 2E,. As has been shown earlier, the value of the modulus ratio E /E,
is an indicator of the reinforcing effect on the yarn tensile stiffness. It can be concluded
from Fig. 3 that the yarn longitudinal tensile modulus ranges from below 0.6E, to over
1.2E,, depending mostly on the blend ratio (the amount of the reinforcing fiber a) as well
as on the yarn-twist level. At a given twist level, increasing the blend ratio B_ will result as
expected in a stiffer yarn, whereas, at a given blend ratio and yarn-twist range, higher
twist will cause a higher fiber-obliquity effect and lead to a lower yarn modulus. In any
case, however, the yarn modulus cannot reach 2E, or E ; that is, the yarn naturally cannot
be stiffer than the reinforcing fiber.

Similar discussion can be applied to the yarn shear modulus G,,. Fig. 4 is plotted
according to Equation (19) to show the relationship between the modulus ratio G, /E, and
the blend ratio B, at three levels of the twist factor T,. It may be seen from the figure that
the yarn longitudinal shear modulus is much smaller than its longitudinal tensile modulus
as shown in Fig. 3. There is a non-linear relation between G, and B, compared with a
linear one between E and B. A similar effect is seen of the blend ratio B, on the yarn
shear modulus. The function of yarn twist is that a higher twist level always tightens the
structure and hence increases the yarn shear modulus.
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Fig.3  Yarntensile modulus v. biend ratio at three twist levels
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Fig.4  Yarn shear modulus v. blend ratio at three twist levels
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Fig. 5, illustrating Equation (26), shows the importance of both the fiber modulus and
the blend ratio in reinforcing the yarn tensile strength. To evaluate the effect of the blend
ratio B,, the figure can be divided into two different zones at the location E/JE = 1. Letus
consxder the fiber type with the higher modulus as the reinforcing component here. In the
region where E/E < 1l or E, > E, type a is the reinforcing fiber. As a result, a higher
blend ratio B, leads toa stronger yarn. However, in the region where EJE >1o0r E < E,
type b becomes the reinforcement and a higher B , meaning less of fiber b w111 weaken the
yarn. This again indicates the fundamental remforcmg mechanism that a higher tensile
modulus is crucial in fiber-reinforcing practice. On the other hand, once the blend ratio B,
is given and fiber b is now the reinforcement, increasing the modulus ratio E/E, will
result in a stronger yam.

Oy
clll'
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0.5

-

U AP
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[ =
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tn

0

Fig.5  Yam breaking strength v. fiber-modulus ratio at three blend levels

Fig. 6 is provided to help understanding of the physical meanings of both the minimum
and critical blend ratios of the reinforcing component. Curves 1-3-5 and 2-3-4 are also
plotted by using Equation (26), where Curve 2-3—4 is the second part; hence Equation (26)
is represented by the curve 2-3-5 collectively. The rule of mixtures that governs the blended-
yarn behavior follows the 3-5 line section. It is therefore seen that the blend ratio of fiber
a has to exceed B, before the rule of mixtures becomes applicable. In addition, point 2
represents the strength of a yarn made of 100% fiber b. The line segment 2-3 shows that,
when very few fibers of type a as the reinforcement are blended into the structure, the yarn
is weakened rather than strengthened. It is not until the amount of fiber a reaches the
critical value B, that the yarn starts to become stronger than the yarn of 100% fiber b.

Figures 7 and 8 show the influence of related fiber properties on the values of B, . and

amin

B__, respectively. Fig. 7 is constructed on the basis of Equation (28) to look into the

acrit”
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effects on B, of the fiber-modulus ratio E/E, and the fiber-strength ratio ¢, /c,. It is
shown in this figure that, in the present range, the fiber-strength ratio ©, /G, is a more
important parameter in affecting the value of B, _ , for B, . will remain zero as long as the
fiber-strength ratio is lower than a certain value, say, 0 2 in the figure, regardless of the
range of the fiber-modulus ratio E/E,. In other words, when the reinforcement is much
stronger than the existing component the minimum blend ratio will disappear so that the
rule of mixtures will be applicable over the full range of the blend ratio B,. Yet, for a
reasonably high fiber-strength ratio, the value of B, varies depending on the fiber-modulus
ratio; a higher modulus ratio will lead to a smaller B__. value. That is, the more different
the moduli of the two fiber types are, the more reinforcement is needed to make the rule of
mixtures applicable.

Fig. 8, on the other hand, is based on Equation (30) to show the relations between both
E/E, and the strength ratio ©, /0, and the critical blend ratio B, . It depicts similar
trends to those observed in F1g "7 except that this time all the relatlons are linear. Again,
a higher 6, /o, value leads to a higher B, ., meaning that more reinforcement is needed
before the system is strengthened. For a yam with a given strength ratio, a higher E /E,
value will result in a small B__; that is, choosing two fiber types with similar tensﬂe
moduli will require a smaller amount of the reinforcing fiber to make a stronger yarn.

e -~ AN
0.2 0.4 0.6 0.8 1B’

Fig.6  Yarn breaking strength v. blend ratio and the minimum and critical blend ratios
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Bamin

Fig.7  Minimum blend ratio v. fiber-strength ratio at three levels of fiber-modulus ratio

Fig. 8 Critical blend ratio v. fiber-modulus ratio at three twist levels
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6. EFFECTS OF THE BREAKING STRAIN OF THE REINFORCING FIBER
6.1 Possible Relations

Besides the strength and modulus of the reinforcing fiber, its breaking strain €, also has a
profound influence on the system parameters. There are in all three possibilities in terms
of the relation between € and €, ie. g, <€, € =&, and €, > €. The preceding
analyses are all based on case 1: €, < €. We shall focus on the other two cases in this
section.

6.2 Effects when &, = €,

In this case, both fiber a and fiber b will break simultaneously, so that the yam strength
will become:

G, =[0uB, +Gu(l= BV (33)
or
o o
e [Ba +o-(1-B, )]mew (34)
. . G, Oy _ .
Since there is always = E, and = E,, we can hence obtain:
au bu
Eon _ O Eﬂ. v
€. 0. E (35
and bringing in € = €, yields:
o
s ¢6)
Thus Equation (34) can also be related to the fiber-modulus ratio:
o E,
o = [Ba +z (1= Ba)]mew 37

The relation between yarn strength and the fiber-modulus (or fiber-strength) ratio as well
as the blend ratio B, can be seen in Fig. 9, which illustrates Equation (37) (or Equation
(34)). The terms ¥ nn,, are constant here and will not influence our discussion, so that we
set Vnn,,= 1 when plotting the following figures. In the case when ¢ = g, the yamn
strength will always increase when more reinforcing fiber is blended into the structure.
The level of either the fiber-modulus or fiber-strength ratio is also important: it determines
the initial yarn strength as well as the rate at which the yarn strength increases when more
reinforcing fiber is added.
" Following the same derivations, we can prove in this case that the minimum blend ratio
for fiber type a is:
amin = 0 (38)
and that the critical blend ratio is:
B_.=0 39)

That is, Equation (33), the rule of mixtures, will now be applicable for the entire range of
0 < B, < 1, and the blended yarn will always be stronger than the yarn made of fiber type
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b alone, no matter how small an amount of reinforcing fiber a is blended in. This is also
illustrated clearly in Fig. 9.

I r o A i B.
0.2 0.4 0.6 0.8 1

Fig.9  Yam-strength ratio v. fiber-blend ratio at three fiber-modulus-ratio levels

6.3 Effects when g > €,
In this case, we have:
Op = [5buEaBa +0,(1-B, )]anmw (40)
or
o &, E o £ o -
Eﬁ = ['g:ﬁ Ba + E:‘L(l - B.)]Vfﬂﬂ’lw = [E:L Ba + ‘6-':L(1 - Ba )]anlnw (41)

Because of the condition €, > €, , we now have a restriction on the selection of the fiber
properties based on Equation (35), i.e.:

£bu —_— o.bu Ea
€ 0w E ! @2)

Fig. 10 is thus plotted at three fiber-strain-ratio levels by using Equation (41), where we
choose the fiber-strength ratio ¢, /6, = 0.4. Then, to meet the restriction in Equation
(42), the fiber-modulus ratio has to be E/E, > 0.4. Fig. 10 does show that the ratio of the
fiber-breaking strain has a considerable effect on the fiber-reinforcing function. It is seen
that, when the fiber-breaking-strain ratio €_/e_ is greater than 0.4 in this case, increasing
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the proportion of the reinforcing fiber, type a, will strengthen the yam. Yet increasing B,
will weaken the yarn when €,,/€,, is lower than 0.4. The yarn strength becomes independent
of the value of B, when ¢ /e, = 0.4.
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Fig. 10  Yarn-strength ratio v. fiber-blend ratio at three fiber-strain-ratio levels

Over-all, the fiber-strength ratio ¢,/0,, and fiber-modulus ratio E/E, are the two key
variables in the fiber-reinforcing effect. First, the two ratios have to satisfy the restriction
in Equation (42) collectively so that, once a ratio is selected to be at a certain level, then
the other ratio cannot take an arbitrary value. Secondly, the level (say, 0.4) of either ratio
is critical, since it determines the level of the fiber-breaking-strain ratio €, /e, at which
the yarn strength will keep a constant initial value and is no longer a function of the blend
ratio B, as may be seen in Fig. 10.

It can also be easily proved that, in this case, the issues of the minimum and critical
blend ratios are again no longer existent.

7. CONCLUSIONS

The elastic-material constants of a blended yarn can be derived by using the analysis
provided in this study. The key variables in determining these constants include the blend
ratio, the fiber size, the fiber orientation, the fiber modulus, and the fiber-volume fraction
of each component and, most of all, the yarn-twist level, which determines many of the
factors. The Poisson’s ratio of the blended yarn, however, is proven to be identical to that
of a single-fiber yarn, independently of the blend ratio if the fiber Poisson’s effect is ignored.
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The mean strength of a blended yarn is strongly influenced by the ratios of the fiber
modulus, fiber strength, and fiber-breaking strain. This influence is better characterized
by using the minimum and critical blend ratios of the reinforcement. The minimum blend
ratio and critical blend ratio exist only when the breaking strain of the reinforcement is
lower than that of the existing fiber type. Otherwise, whether the blended yarn strength
will increase along with the amount of the reinforcing fiber will be dependent on the fiber-
breaking strains. If both fiber types have an identical breaking strain, the yarn strength
will always be stronger than the strength of the yarn made of fiber type b alone, no matter
how small an amount of reinforcing fiber a is incorporated. In the case in which the
reinforcing fiber is more extensible, the yarn strength can become higher or lower or
remain constant when the amount of the reinforcing fiber increases, depending on the
difference between the fiber-breaking strains of the two fiber types.
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