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ABSTRACT: This work deals with the relationships between the strengths of fiber, fiber
bundle and a unidirectionally reinforced fiber composite. A factor designated as the sur-
viving fiber ratio is introduced in this study to reflect the fact that during the fracture pro-
cess of a fibrous structure, the fibers will not break simultaneously because of the fiber
strength variation. This new factor results in a gradual breakage pattern on the stress-strain
curve, and hence reduces both the ultimate strength and the breaking strain of the struc-
ture. Incorporating this new factor into analysis leads to a more realistic prediction.

Using the previous results on the distributions of fiber and fiber bundle strengths, the
distribution function of the composite strength and the related distribution parameters are
then derived. The effects of the interactions between fibers and matrix in the composite
reflected by the critical fiber length, and the fiber strength variations accounted for by the
surviving fiber ratio are included when calculating the distribution parameters for the
composite strength.

Next, the comparison between the predicted stress-strain curves of fiber, fiber bundle,
and composite-is provided to reveal the important mechanisms influencing composite
strength. The most probable strength is then derived as the best estimate of the actual
strength for these fibrous systems. This actual composite strength o, is compared with the
mean composite strength ., the actual fiber bundle strength g,, and the actual fiber
strength o, so that the translation efficiency of fiber strength into composite strength is
described. :

Based on the new approach, the important issues such as the fragmentation and the ex-
perimentally observed synergetic effects on composite strength are analyzed in detail, and
the necessary conditions for these effects to occur are provided. The influences on the
composite strength of the fiber and matrix properties, including the fiber scale and shape
parameters o, 8, the tensile moduli ratio E,/E,, the fiber volume fraction ¥; and the shear
yielding stress 7, of the interface, are also discussed.

KEY WORDS: distribution of composite strength, fiber strength variation, stress-strain
curve, mode of the strength, fiber-matrix interactions, synergetic effect.
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1. INTRODUCTION

THE STRENGTH AND toughness of a fiber composite are influenced to a high
degree by the properties of the composite interface through which interaction
between fibers and the matrix is realized during composite fracture process. The
most significant evidence of this fiber-matrix interaction is best revealed by the
existence of the so-called fragmentatxon phenomenon in the composxte described
first by Kelly and Tyson [1].

A unidirectional composite is made of parallel continuous fiber bundles i impreg-
nated into matrix material. If there were no interaction between fibers and the
matrix, prediction of the composite strength would be a simple matter of using
the Rule of Mixtures, provided that the difference between the breaking elongation
of the two constituents is taken into account. In other words, the composite
strength would be linearly proportional to that of the fiber bundle. The occur-
rence of the fiber-matrix interaction, however, greatly complicates this otherwise
very direct relationship.

There have been a great deal of theoretical and experimental studies on the
relationship between fiber strength and composlte strcngth and reference to
some of the represematnve papers [2-11] is provided in this article.

One of these studies is particularly interesting to the present analysis. It is a
relatively thorough experimental work done by Bader and Priest {2] involving
tensile strength examination of single fibers, fiber bundles, impregnated bundles
and hybrid bundles. Their results were later utilized and further analyzed by
Watson and Smith [10]. For convenience, we provide in Table 1 from that work
a portion of the data relevant to the present study.

In that experimental work, the same single fibers were arranged in parallel to
form the fiber bundles, and the fiber bundles were then embedded into matrix
material to form the unidirectional composites. The strengths of the single fibers,
the fiber bundles and the composites were then tested as shown in the table.

The following general observations can be made based on the experimental
results:

1. As being well-known, for the same gauge length, the mean strength of the sin-
gle fiber is greater than that of the fiber bundle.

2. For the same gauge length, the mean strength of the composite is greater than
that of the fiber bundle (in the example, even greater than that of the fiber).
This is obviously in contradiction to the Rule of Mixtures which states that a
composite strength cannot exceed that of its strongest constituent. The data

Table 1. The strengths tested at gauge length 20 mm [10].

Type Single Fibers Fiber Bundies Composites
Test number 70 ' 25 28
Mean strength (GPa) 2.45 1.68 2.82

Strength S.D. (GPa) 0.49 0.10 0.16
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therefore provide a clear evidence that the interaction between matrix and
fibers does have a synergetic function, leading to a system with strength
higher than its constituents. Considering the fact that the composite strength
is a result of the fiber strength discounted by the fiber volume fraction, this
synergetic result is even more significant.

3. For the same gauge length, the ranking in terms of the strength standard devi-
ation is single fiber > composite > fiber bundle.

The present study is an attempt to examine and explain in detail the above
strength discrepancies using statistical analysis with the inclusion of composite
interfacial property, the fiber property variations, and the interaction between
fiber and matrix. The fiber-matrix interaction may take place either during com-
posite manufacturing process, where the liquid epoxy may alter the fiber property
by penetrating into the pores on the fiber surface, and the relatively high tempera-
ture may also promote property changes of fibers and matrix, or during the com-
posite extension upon loading, where the interaction is mainly through stress
transfer between fiber and matrix via the interface as characterized by the frag-
mentation process. The present analysis will however ignore the effects caused by
the property changes of the fiber and matrix during composite manufacturing
process.

The following assumptions are made in the present work:

. Fiber strength distribution is of Weibull form.

2. Fibers have linear stress-strain relationship up to breakage.

3. The composite is a unidirectional lamina with continuous fibers arranged par-
allel to the loading direction. The effect of fiber misorientation has been stud-
ied quite thoroughly and is therefore excluded here.

4. Variations, and changes during composite extension, of the interfacial proper-
ties between fiber and the matrix are neghglble

5. The interactions between fibers and matrix in a composite wﬂl not affect the
form of the strength distribution of the individual fibers.

6. When a fiber breaks, the load it was carrying is equally shared among the sur-

viving fibers. The effects of stress concentration and dynamic wave propaga-

tion are ignored.

o

2. THE STATISTICAL DISTRIBUTION OF FIBER
BUNDLE STRENGTH

The stress-strain curve of a fiber bundle would be identical to that of its constit-
uent fibers if all fibers were uniform in their tensile properties. Unfortunately, in
reality, there is more or less a dispersion in the fiber mechanical behavior, this
fiber property dispersion will inevitably lead to a dlscrepancy between the prop-
erties of the single fiber and the fiber bundle.

2.1. The Statistical Distribution of Fiber Strength
According to Coleman [12], the cumulative strength probability distribution
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function of a fiber is of Weibull type. So for a fiber with length l, theprobabnhty
of the fiber strength being o; is

F(a,) =1- exp[-l,aoﬂ ' )]

whereasthcmlcpammﬁermdﬁxsﬁneshapepammetemfﬂ:eﬁbermﬂboth
are independent of the fiber length ;. The shape parameter # is an indicator of
the fiber strength variation. A higher 8 value corresponds a lower variation, and
when g — oo, ﬂwﬁbermmonwwldappmmhzemmmeﬁbcrmengm
would be independent of its length.

Themeanortheexpecwdvalueoftheﬁberstrengtha,canmenbecalculated
as

3 = (l,a)""r(x ;%), o &
where T() is the Gamma function, and the standard deviation of the strength is
2 12
rfi+3) |
& =8 —— 1] | Ko
’ ’r’(l +E)

Note that, as pointed out in Reference [10], Equation (1) may not always be
accurate for some fibers; it may overestimate the strength for shotter fiber leagth
while underestimating the strength for longer length. However, we have assumed
matﬂxepmnumlymsﬁmusesonlyontheﬁberswhosemmﬁmlbnnms
are strictly Weibull forms.

2.2 mmmmmmamms«m

LetusﬂnenconsndernﬁbmmsystmwhereNﬁbersﬁmnapamlklbundle
with no interaction between individual fibers. Because of the variation in single
fiber strength, the fiber bundle strength will consequently obey a statistical distri-
bution as well. This problem was first tackled by Daniels in Reference [13]. Based
on his analysis, for a large bundle of high N value, the density distribution func-
tion of the bundle strength o, approaches a normal form ,

o _3. 2
H(a,) = Vi—g-exp[ 0, — %) 761 ) ] @

where o, is the expected value of the bundle strength

3, = (o)™ exp(—%) o ©)
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and O, is the standard deviation of the strength

0; = (Lap)y™* [CXP(-%)] [1 - exp(—é)]- N ©)

It is already well recognized that the expected strength of a fiber bundle is
lower than that of the fiber. This can be seen by comparing Equations (2) and (5).
The strength variation of the fiber bundie is also smaller, depending among other
factors on its size N, than that of the fiber given in Equation (3).

It is apparent that the tensile modulus of this fiber bundle is identical to that of
the fiber.

3. THE STRENGTH DISTRIBUTION OF A FIBER
REINFORCED COMPOSITE

It has become a common knowledge that fibers, once embedded into a matrix
material to form a composite, will behave differently due to the interaction be-
tween them and the matrix, and this interaction will inevitably alter the proper-
ties of the fibers. ~

3.1. The Fragmentation Process, the Critical Length and the in situ
Strength of Fibers

It has been frequently observed during the fracture process of composites as
well as of blended yarns {16] that, so long as there is a difference between the
breaking strains of the constituents, the fibers will break repeatedly with increas-
ing strain of the structure until the length of the fiber fragments reaches a mini-
mum value where load can no longer build up to its broken strength. This length
is well known as the critical length. If o2 is the tensile stress which causes the
fiber to break, it follows that this critical length /. is given by Reference [17] as

r;0}

)

I =
Ty

where 7, is the fiber radius and 7, is the yielding shear strength of the matrix adja-
cent to the interface or that of the fiber-matrix interface, whichever is less. It is
implied in this equation, as pointed out by Rosen [15], that the original fiber, once
embedded in the matrix, has to be treated as a chain of statistically independent
fiber segments of length I. whose value is determined by the fiber in situ strength,
fiber size and the quality of the interface between the fiber and the matrix as
specified in the equation.

Furthermore, as indicated by Henstenburg, Netravali and Phoenix {18,19], the
actual fragments lengths are not a constant and vary in the range of /./2 to I.. This
problem can be solved by replacing /. with the mean fragment length 3/./4 if a
uniform distribution of this length is assumed. For simplicity however, we still
use Equation (7) for this study.
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Additionally, because of the strong strength-length dependence of fibers, the
fiber strength o} can no longer be treated as a constant. The fragmentation pro-
cess has revealed that during the extension of the composite, the fibers are
stretched segment by segment through matrix. So according to the Weibull rule,
the strengths of these fiber segments will become higher owing to their shorter
lengths.

During the composiﬁc extension, by definition any fiber fragment with length
longer than /. is still able to break somewhere along its center section as its stress
exceeds its current strength of o} . Therefore, the mean length before fibers break
into I, will be 4/./3. Ttnsw:llbethelengﬂlbywiuchthevalueofa}forﬂwnew
fiber fragment is determined. Keeping this in mind and combining Equations (2)

and (7) gives
-8 I+ By

S o ®
Ty

The in situ fiber strength o* can then be determined from Equation (2) replacing
the original fiber length [, by the critical fiber length /. to reflect the fiber-matrix
interactions,

3.2, The Strength Distribution of a Composite

Inv:ewofthepreoedmganalysns, thesn'engtlw,oftheoompomemderunmx
ial loading has also to be treated as a statistical variable. Assuming the fibers to
have lower breaking elongation, the composite strength can be readily obtained
from

0. = Vo, + VpEne, ®

where E,, is the matrix modulus, ¥, and V,, are the volume fractions of the fiber
and matrix respectively, and ¢, is the breaking strain of the fiber bundle and is
related to the bundle strength g, through the tensile modulus of the bundle which
is identical to that of the fiber. So the above equation can be reduced into

VEw VEm :
o. = Vo, + “E = (V; + T)"' 10)

Equation 10 states that the statistical variable ¢, is proportional to the statistical

variable o, whose distribution is defined in Equation (4). Because of the normal-
ity of g,, g. is hence a normal variable as well with the parameters, according to

statistical theory, as ‘ ,
0. = (V! L E')'ép(l ) o (1
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and

o. (V,+——"l‘%)e(t) a2

where 5,(l.) and ©,(].) are the mean fiber bundie strength and its standard devi-
ation which can be calculated from Equations (5) and (6), except that the fiber
length [, in the equatlons has to be replaced by the critical length /. defined in
Equation (8). This step is crucial so that the effect of fiber-matrix interaction can
be included.

Then the distribution -density function of the composite strength can be ex-
pressed as

l g. — O,
He.) = mexp[ 291’) ] (13)

If we accept the hypothesis on estimating the maximum range of a statistical
variable, based on the normality of the composite strength distribution, there is
over 99% chance that the actual composite strength will fall into the range of
a. + 39, i.e.,

G0 £306,d) = (14

a¢~¢'7¢:!:39,=(V, VE)

4. THE STRESS-STRAIN CURVES OF FIBER BUNDLES
AND COMPOSITES

Snppose the single fibers used for this study are of linear mechanica!l behavior
prior to failure. The fiber properties such as the tensile modulus, the mean
strength and breaking strain are provided in Table 2.

Table 2. Pmpdnks used for calculation.

em Fiber Matrix Unit
Fiber radius r, 5x 107° mm
Fiber gauge length / . -10 : mm
Tensile modulus E = 720 En = 1.44 GPa
Fiber number N . 200 ~
Fiber shape parameter 8 . 4.0 ) e
Fiber scale parameter « 2 x10°° 1/mm.GPa”)
Fiber mean breaking strain & 3.35 x 1072
Mean fiber strength o, 2.41 , GPa
Fiber volume fraction V; 0.6

interfacial shear yielding stress r, 08 GPa
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4.1. The Stress-Strain Relationship of Fiber Bundle

For a fiber bundle of length [, under a given external strain ¢, high enough to
-cause fiber breakage, the fibers will not fail at the same time because of the varia-
tions between fiber strengths. Instead, they will break gradually, according to
their strength distribution, over a range of the strain ¢, . Therefore, the fiber bun-
dle stress ag,(/;) can be expressed as , '

o,(p) = ¥, ()Eye, - 15

where ¥,(/,) is the fraction of the number of fibers that are not broken yet at the
current strain level ¢, and are still carrying the load. This surviving fiber ratio
can be calculated as

¥,() = ] H(o,)do, (16)

E’ €p

where H(o,) is the distribution density function of the fiber bundle defined in
Equation (4).

4.2. The Stress-Strain Relationship of the Composite

Likewise, the conventional stress-strain relationship (the model I) of a fiber
composite

o.(y) = [EV, + (1 = V))E.]e. an
has to be modified into (the model II)
ac(lc) = [*f(lc)EfV; + (1 - V;)E..]é. _ (18)

The surviving fiber ratio ¥,(l,) is identical to that defined in Equation (16), but
the fiber length I, has to be replaced by the critical length I, when constructing the
distribution function H(e,) 50 as to reflect the fiber-matrix interactions in the
composite. ' ' '

The comparison between the stress-strain curves of the single fiber, the fiber
bundle, and the fiber reinforced composite according to Equations (17) and (18),
using the data in Thble 2, is provided in Figure 1. It is seen from the figure that,
compared with others, the fiber bundle possesses both the lowest strength and
breaking elongation due to the fiber strength variations represented by the surviv-
ing fiber ratio ¥,(/;). Yet once the fiber bundle is embedded into a matrix to form
a composite, Equations (17) and (18) give two significantly different results. Ac-
cording to Equation (17), the model I where the effects associated with both the
fiber strength variations (the factor ¥,) and the fiber-matrix interaction (the citi-
cal length /.) are excluded, the composite failure takes place at the same breaking
elongation as that of the fiber, higher than that of the fiber bundle; therefore the
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Figure 1. The stress-strain curves of fiber, fiber bundie, and composite based on two theo-
ries.

strength of the composite is also higher than that of the fiber bundle. But using
Equation (18), the model 11, the breaking elongation and the strength of the com-
posite are seen to be the greatest among all the cases. This is obviously due to the
reinforcing mechanism of the fiber-matrix interaction reflected by the critical
fiber length /. which is so dominant that it compensates for the effect of the fiber
strength variations ¥,(/.), which as shown above reduces both the strength and
breaking elongation of a structure. Further detailed comparisons and explana-
tions between these cases will be given in the later sections.

Finally, the effect of the surviving fiber ratio ¥, blurs the otherwise sharp edges
of the stress-strain curves of the fiber bundle and the composite (model II), yield-
ing results closer to the real situations.

5. THE ACTUAL STRENGTHS AND BREAKING ELONGATIONS OF
FIBERS, FIBER BUNDLES AND COMPOSITES

The mean strengths of the several fibrous structures derived above represent
only the average results. It is usually more meaningful to find out the actual
strengths, i.e., the peak values on the stress-strain curves, and the corresponding
strains as the actual breaking strains.

According to the weakest link hypothesis, the actual strength of a fiber bundle
is in fact determined by its weakest constituents. Therefore, in order to find the
actual strength, we have to deal with the problem of the distribution of the small-
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est fiber strengths. It can be proved that the peak value on a stress-strain curve
of a fibrous structure is in fact the mode of the smallest fiber strengths, or the
most probable value of the strength distribution. For a normal distribution as
‘shown in either Equation (4) or (13), this most probable value o,, can be calcu-

lated as [M4]
_ : log log N + log 4«
o,,.=a—-6\/210gN+Q NATY (19)

The corresponding mean 7 and standard deviation © values should be used
when applied to a fiber bundle or a composite, respectively.

It is clear from this equation that in the present case the mode o,, is always
smaller than the mean value §. Further, by definition, there is a higher proba-
bility than those of any other alternative strength definitions that this mode g., is
the most likely estimate of the actual strength o; we can therefore treat it as such
so that 0,, = ¢. Additionally, it is again shown clearly in Equation (19) that it is
the strength variation which reduces the strength of a fibrous structure.

More specifically, a comparison between the mode g, and the mean 3, of
fiber bundle strengths using Equations (5) and (19) is depicted in Figure 2. Since,
for a given fiber scale parameter o, this ratio is found to be related only to the
fiber number N besides the fiber shape parameter 8, the results at three N levels
are provided here. It confirms in the figure that the mode of the bundle strength
is always smaller than the mean bundie strength. This discrepancy will however
reduce at a higher value of either 8 or N.

O

[
0.95 Neme
0.9}
0.85

o

.75

P LA
Figure 2. The effects of § and bundie size N on the o,/5, ratio.
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Figure 3. Effects of 8 and « on the fiber strength o;.

On the other hand, the most probable value of g,,, of a fiber strength whose dis-
tribution function is of Weibull form is provided in Reference [4] as

l 1/8
Opm = 0p = ('?“)""(1 - E) (20)

where n is the number of unit length (the fength of the basic finks). For conve-
nience, we choose the unit length = 1 mm so that the magnitude of n is equal
to the gauge length at which fiber strength is determined. It should be pointed out
now that the fiber breaking strain in Figure 1 is thus determined as o;,./E; or
0';/ Ef

The effects of the fiber shape and scale paramemrs B and.« on the actual fiber
strength ¢, are shown in Figure 3. There is an optimal 8 value for each given a
at which the fiber strength will reach the maximum. This optimal condition how-
ever may not be of great practical significance since in most applications, the 8
values are likely above this level. We can hence conclude based on the figure that
in practice when £ value is not very large, increase of 3 level will reduce the fiber -
strength, and a higher o will lead to a lower fiber strength. However, as § value
becomes very high, i.e., fiber strength variation reduces greatly, the fiber
strength will approach a lowcr but more oonsxstcnt value mdependent of both «
and S8 levels.

To venfy the difference between the actual and mean ﬁber strengths, the ratio
o,/ 6, is formed based on Equations (2) and (20), and is.found to be related only
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to 8. This relationship is illustrated in Figure 4. The mode of the fiber strength
as seen in the figure can be either greater or lower than the mean fiber strength,
depending on the 3 level. So there-is also a critical 8 value to make o, = 3;. It

is clear though this critical value is larger than the optimal 8 value in Figure 3.

The results in Figures 2 and 4 may suggest that for a strength variable following
normal distribution, its most probable strength cannot exceed its mean strength.
While for a strength variable of Weibull nature, this strength mode can be either
greater or smaller than its mean value depending upon the dispersion or the 8
value of the variable.

6. PREDICTIONS AND DISCUSS]ON

The assumed fiber and matrix properties required for calculations are provnded
in Table 2, and in the following discussions, unless specified otherwise, these
data will be used.

61 Fiber Bundle versus Composite”

To reveal the reinforcing mechanism in a composite, it is necessary to study the
relationship between the streagths of the fiber bundle and the composite. So far
we have had two strength definitions, the actual (the mode)-strength and the mean
strength. To investigate the difference between the strengths of the fiber bundle
and the composite, we can use the strength ratios calculated based on the two
strength definitions, that is, the ratio of the mean strength ./, and the ratio of

s
1.025{
B!
0.975}
0.95

0.925
0.9

2 4 6 8 IOB

Figure 4. Etfect of 8 on the o1/, ratio.
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the actual strength o./0,, respectively. For easy manipulation, let us define a
third ratio

0. [0, .
o = 3 /o, @1

When ¢,, is greater or less than, or equal to one, 6./, is greater or less than,
or equal to o./0,. Based on Equations (§), (1) and (19) and using the data in
Table 2, Figures 5(a) and (b) are plotted to show the effects of the important
parameters on this ratio d,,.

Figure 5(a) shows that the composite fiber volume fraction ¥, has a significant
impact on ¢,,. In general, a higher V, level leads to a greater J,, value. At a
given S level, there is a critical V; level beyond which d,, will be greater than
one. The effect of the fiber shape parameter 8 is dependent on the value of V;
when V, is lower than the critical level, 8 has little effect except when it is very
small; and once V; exceeds the critical value, increasing the 8 value will lower the
¥, result. When fiber strength variation diminishes, i.e., when 8 — oo, 8,, will
approach one, becoming almost independent of both V; and 3 so that there will be
G./9, = o./0,. ' _

The effects of both 7, and E,,/E, on ¢,, value are depicted in Figure 5(b). It is
seen that a higher value of either 7, or E,./E,, i.e., a better interface or a stiffer
matrix, will yield a greater d,,. There also exists a critical value of 7,, depending
on the level of E,,/E,, for ., to be greater than one. Moreover, the effect of E,,/E;
on 9, is clearly not linear, as the three curves are spaced irregularly in the
figure, although each of them corresponds to the same ten-time difference in
E../E, value. ‘

It should be noted that at given levels of the related variables, J,, will be a con-
stant, meaning G./0, is always proportional to o./0,. Therefore, comparison
between the actual strengths is equivalent in proportion to the comparison be-
tween the mean strengths of the fiber bundles and composites.

Applying Equations (5) and (1I), the ratio between the mean strengths of the
composites and fiber bundles, denoted as 9., for brevity, can be expressed as

G. V.E.\ (L\-"8
O == = |V, + = 22
2 ( ! Ef )(lf) ( )

And, it is easy to see from Equations (6) and (12) the strength variation ratio

e. VaEn) L\ _ 3.
',62 =~e.: - (Vf + Ef )(lf) - a,p (23)

So the discussion about 6./, is equivalent to that about 5./7,.

First of all, it is clear from Equations (22) and (23) that the ratio of the critical
and the original fiber lengths ./, is a key factor in determining the mean strength
and the variation ratios. It is seen from Equation (8) that this length ratio is
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Figure 5. Relationships between important variables and the ratio ... (a) Effect of g at
three V, levels. (b) Effect of r, at three En/E; levels. .
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related to the fiber radius, the fiber shape and scale parameters as well as the in-
terfacial parameter between fiber and the matrix. In fact, it can be readily proved
that

E 1/8 _ af—(lc—)
(t,) = a0 @4

where o,(l.) and a,(/;) are the fiber in situ and the original mean strengths,
calculated based on Equation (2) but using the critical length /. defined in Equa-
tion (8) and the fiber original length [, respectively. The length ratio [/, is
therefore an indicator of the matrix reinforcing effect on fiber strength; a smaller
1./1, represents a higher reinforcement to fibers from the matrix.

Figure 6 is hence plotted of the length ratio ./l against other parameters.
Figure 6(a) describes the influences of a and 8 on the length ratio. When S is
relatively small, a higher a or 8 value will yield a smaller I.//;. But as 8 in-
creases, [./l, decreases to a constant regardless of the level of either parameter.
The influences of 7, and the fiber radius r, is depicted in Figure 6(b). Generally
speaking, a higher 7, value, reflecting a better interface, generates a more signifi-
cant matrix reinforcing effect on fiber and leads to a smaller /.//, value. However,
the effect of 7, is more obvious when it is at a lower level. At a given 7, level, a
finer fiber will also result to a smaller ./, value.

Furthermore, it can be easily seen from Equation (22) that, theoretically, 3.,
value may not be necessarily greater than 1, meaning the strength of the compos-
ite may not be greater than that of the fiber bundle. In order for the ratio 4,; to
be greater than 1, or for a synergetic effect relative to the fiber bundle strength to
occur, there are critical values for all the variables involved. In fact, based on the

definition
-C VM " 'C -l/B
00 =22y, + LE)ET 2 25)
E; I

we have the condition for the composite strength to be higher than the bundle
strength as

Em Ic g
Vf+(1—Vf)EZ 1 (26)

First, if the fiber parameters and the interfacial property 8, «, r; and 7, are
such that the fragmentation process is prevented so that (I.//,) = 1, the Inequality
(26) will be reduced into

E. 2z E @7

That is, one has to utilize a matrix stiffer than the fiber to form a composite
whose mean strength is no lower than the mean strength of the fiber bundle. In
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practice, since there is usually E,, < E, the composite strength will be greater
than the bundie strength only when (I./[;) < 1, that is, only when the fragmenta-
tion process takes place. In other words, the occurrence of the fragmentation pro-
cess in a composite is a necessary condition to make a composite stronger in ten-
sile strength than the fiber bundle. However, it is shown in Figure 6 that, in the
practical ranges of the related parameters, there is always (I./];) < 1.

A more detailed discussion on the ratio ¥,, = 6./, is provided in Figure 7.
Figures 7(a) and (b) illustrate how the variables 8, «, r; and 7,/ E, influence the
mean strength ratio. At the given parameter levels here, either decrease of 8 or
increase of o will lead to a significant increase in J,; value. The effect of o how-
ever levels off very quickly, and ¢,, becomes independent of « at high level of 8
in Figure 7(a). ,

To show the function of 7, more clearly, Figure 7(b) is plotted covering a small
range of 7, values. Most of all, the figure conforms again that a proper combina-
tion of the variables is necessary to ensure J,, > 1. The importance of the inter-
facial property 7, can be seen from the figure. When 7, is lower than a certain
level, for a given fiber radius r,, the value of &,, will be smaller than 1. In other
words, the synergetic effect will not occur in the case of a poor bonding between
fibers and the matrix. Beyond this minimum value, a higher 7, value, meaning a
better interface, or a finer fiber results in a &, ratio higher than 1.

Fiber volume fraction ¥, and the tensile moduli ratio E../E, also affect the ¢,,
value as shown in Figure 7(c). First of all, when V, is increasing, J,, value
becomes larger. There is however a critical value V,, beyond which #,, value will
exceed 1 so that the synergetic effect will take place. The physical implication of
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Figure 7. Relationships between important variables and the ratio 9,,. (a) Effect of § at
three o levels. (b) Effect of 7, at three t, levels. (c) Effect of V, at three E/E; levels.
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V;, is that there has to be enough fibers, as another necessary condition, for the
synergetic effect to occur. On the other hand, as proved by the present author in
Reference [20] that the fiber amount in a composite cannot exceed an upper limit,
indicated in Figure 7(c) as V;,, to avoid the deterioration of the interfacial bond-
ing between fiber and the matrix because of excessive fibers. So the proper range
of the fiber volume fraction for the synergetic effect to realize will be V,, <
V; < V. In addition, although the tensile moduli ratio E,./E; affects the .,
value, the influence as seen in Figure 7(c) is not linear, and in cases where
E./E; < 002, the influence becomes so small as to be negligible.

6.2, Composite Strength Distribution

Next, let us examine how the important variables 8, «, 7, and ¥, may alter the
distribution of the composite strength. The distribution function of the composite
strength is already proved to be a normal form as expressed in Equation (13). So
we only need to evaluate its mean and the standard deviation. The mean value and
the standard deviation of the composite strength are both related to these vari-
ables as depicted in Figure 8 using Equations (11) and (12).

Figures 8(a) and (b) show the relationships between the mean composite
strength G, the strength standard deviation ©., and the fiber scale parameter o
and shape parameter 8. Similar to Figures 7(a) and (b), when all other parame-
ters are given, a reduction of o value will lower both the composite mean strength
and its variation, and decrease of 8 will lead to a significant increase of both the
composite mean strength and its variation, when 8 is small. The functions of both
o and B will diminish and the composite mean strength and its variation will
become independent of the two parameters at high level of 3.

On the other hand, the influences of 7, and ¥, can be seen in Figures 8(c) and
(d). It is easy to understand that poor bonding between fiber and matrix, repre-
sented by a small 7, value, will lead to a lower composite mean strength as well
as its variation, whereas a higher V; value results in a higher value of both com-
posite mean strength and its variation.

6.3. Compeosite Strength versus Fiber Strength

It is of more practical interest to compare the strengths of the fiber and a com-
posite made of the fiber. This comparison is done here between their mode values
as defined in Equations (19) and (20), and the results are illustrated in Figures
9(a-c) against the key parameters involved. Obviously, this strength ratio 0./ g, is
an indicator of the translation efficiency of fiber strength into composite strength.

It is seen from the figures that the ratio 0./ g, can be either smaller or greater
than 1, conforming the results shown in their stress-strain curves in Figure 1 as
well as in the experimental data in Table 1. So in each figure, there is a critical
level for the parameters concerned in order for the synergetic effect of composite
strength in relation to fiber to occur. '

Again the effects of both 8 and a on ./ g; ratio in Figure 9(a) are very similar
to those shown in Figures 7 and 8. The critical value of 8 for 0./a, > 1 is approx-
imately 8 < 5.5, and is barely influenced by the o level. .
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The bond shear yielding strength 7, and the fiber volume fraction V; play im-
portant roles as seen in Figure 9(b): a higher 7, or ¥, value will lead to a greater
composite strength or a higher 0./ o, ratio. The condition for ¢./0; > 1 is depen-
dent on the combination of the two

The relation between ¢./0, and the modulus ratio E,./E, appears linear in
Figure 9(c) at three 7, levels. Once again, the condition o./0, > 1 defines the
critical values of the two variables for the synergetic effect in composite strength
to take place.

64. Composite Strength Based on the Two Models

There are two theoretical models given in Equations (17) and (18) respectively
in prediction of composite stress-strain relation and strength as already shown in
Figure 1. The most probable strengths based on the two models can be calculated
from Equations (11), (12), (17), (18) and (19), using [, for strength o, of model 1
and /. for o, of model II correspondingly. As mentioned before, the difference
between the two strengths is caused by with or without consideration of the fiber
strength variation and the fiber-matrix interactions in the composite. ,

It can be readily demonstrated that the ratio 0.,/ 0., is independent of the fiber
volume fraction V;, the modulus ratio E,./E; and the fiber. mlmber N, and is~
related only to 8, «, 7, and r,.
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First of all, the ratio o.,/ 0. is proved to be always greater than 1, an indirect
reflection of the synergetic effect due to the fiber-matrix interactions in a compos-
ite. There is again an optimal 8 value as shown in Figure 10(a) at which the ratio
" 0t/ 04 will reach the highest level. '

So far we have seen several optimal 3 levels in Figures 3, 4, 5(a), 7(a), 9(a) and
10(a). The optimal g level for fiber strength o, to be at its maximum in Figure 3
can be calculated as 8 = 1.381. The optimal 8 value associated with the mean
composite strength . (or the ratios J.,, as well as §,, corresponding to Figures
5(a) and 7(a) respectively) is obtained as § = 1.376, and the identical optimal
value 8 = 1.376 is also derived in the case of ratio 0./, in Figure 10(a). The
discrepancy between the above two optimal 8 values may suggest that the in situ
optimal 8 = 1.376 is shifted (reduced) a little away from its: original value 8 =
1.381 due to the fiber-matrix interactions in a composite. On the other hand, the
critical 8 = 5.5 in Figure 9(a) sets the condition for composite strength to be
greater than the fiber strength. Furthermore, the critical 8 value for fiber strength
to be greater than its mean value as indicated in Figure 4 is derived as 8 = 3.312,
but this value is of no significance to composite strength. -

To summarize, the 8 value leading to a higher fiber strength will also result in
higher mean and actual composite strengths. The in situ § value in a composite
however will deviate slightly from the value for the fibers or fiber bundles, pre-
sumably due to the fiber-matrix interactions in the composite. When all other
variables are given, 8 is the key factor for the composite strength synergy com-
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Figure 10. - Relationships between important variables and the ratio o /o (8) Efect of 8 at
three o levels. (b) Effect of r, at three r; levels. : £
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Figure 10 (continued). Relationships between imporiant variables and the ratio oci/s:. (8)
Effect of 8 at three o levels. (b) Effect of , at three t; levels.

pared with fiber strength to occur. Whether a fiber strength is greater or lower
than its mean value will have no effect on the composite strength.

Furthermore, the results of 0., and o, are compared in Figure 10(b) as func-
tions of 7, and r, values. Again, a higher 7, value or a finer fiber will increase the
composite strength or the ratio 0./ 0u.

It should be noted that although the above discussions are focused on strengths,
the conclusions are applicable to the breaking strains owing to the direct relation
between the two. -

Finally, it has to be pointed out too that, the present theory reflects the length
dependence of fiber strength, in Equation (2), and of fiber bundle strength, in
Equation (7). However; for a composite, as its strength is determined by the criti-
cal length . of the fibers as defined in Equation (8), the strength seems to be inde-
pendent of the composite length. In fact as mentioned earlier, the critical length
is only a representative value of the fiber fragment length that is actually a statis-
tically distributed variable. The variation of the critical length will lead to the
variation of the composite strength at different composite cross sections. Then the
strength of the composite is determined by the strength of its weakest cross sec-
tion which is, according to the Weakest link theory, related to the composite
length. Another possible addition is the strength variation of the matrix material
which may cause some size (length) effect as well.
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7. CONCLUSION

The strength of fiber composite has been proved to be a normally distributed
statistical variable, and its mean and variation are the functions of the mechanical
properties of fibers, the matrix and the fiber-matrix interface. By including the
effects associated with the fiber strength variation and the fiber-matrix interac-
tions into the formula in calculating the parameters of the composite strength dis-
tribution function, a better model is established to yield closer prediction for the
composite stress-strain curve and the composite strength.

The mode of the smallest-strength distribution is taken as an estimate for the
most probable strength (MPS) of fibers, fiber bundles or composites. If the
strength distribution is a normal form such as in the cases of fiber bundle and
composite strengths, the MPS is always smaller than the mean strength. Whereas
for a Weibull variable like fiber strength, the MPS can be either greater or
smaller than its mean strength depending on the level of the fiber shape parameter
B.

Compared with the simple Rule of Mixtures model, the present model predicts
a much higher composite strength and a stress-strain curve much closer to the
real situation.

More specifically, the actual composite strength is found to be determined by
the aforementioned two mechanisms. The first is due to the fiber strength varia-
tion reflected by the fiber surviving ratio ¥, which leads to a span of fiber break-
age and creates a round-off effect on the peak of the stress-strain curve of a com-
posite. As a result, the composite strength and breaking strain are reduced. The
second mechanism is associated with the fiber-matrix interactions during com-
posite extension accounted for by the critical fiber length I.. This latter reinforc-
ing mechanism is so dominant that it can compensate for the former mechanism
of the fiber strength variation, leading to an overall synergetic effect in fiber com-
posite strength, i.e., the strength of the composite being greater than that of either
the fiber bundle or the fiber.

Therefore, occurrence of the fragmentation process is a necessary condition
for the synergetic effect in composite strength to take place. However, the fiber
fragmentation process in a composite will occur only under a proper combina-
tion of the fiber and matrix as well as the interface properties.

To create and enhance the synergetic effect, a proper selection of the properties
of the fiber and matrix is critical; finer fibers with high strength variation (small
3 value) and a high scale parameter «, and a stiffer matrix are desirable. When
forming the composite, the fiber volume fraction should be high and the fiber-
matrix interface should be strong.

Furthermore, the 8 value leading to a hxghet fiber strength will also result in
higher mean and actual composite strengths. The in situ B value in a composite
however will deviate slightly from the value for fibers and fiber bundles, presum-
ably due to the fiber-matrix interactions in the composite. Also, 8 is critical for
the composite strength synergy relative to fiber strength to take place. Finally,
whether a fiber strength is greater or lower than its mean value will have no effect
on the composite strength.
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The strength-length dependence of a composite can be predicted using the
present theory if we treat the critical fiber length in the composite as a statistical
variable. The chance of having a weaker cross section with lower strength in a
composite is then a function of the composite length.
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