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Behavior of Yarn Pullout from Woven Fabrics: Theoretical and Experimental
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ABSTRACT

Yarn pullout behavior from a woven fabric is an important indicator of the mech-
anism of yarn interactions within the fabric and a predictor of its various mechanical
properties. It is investigated in this paper both theoretically and experimentally. An
analytical model developed for nonwoven structures is modified here to describe the
yarn pullout process. This theory is able to predict the relationship of the maximum
pullout load and the embedded yarn length in a woven fabric with tight structure.
The maximum load is shown in the theory related to the mechanical and geometric
properties of the fabric and yarn. Experimental work verifies the connections between
fabric properties and yarn pullout behavior, and a comparison of critical yarn pullout
lengths, predicted and measured, is also presented. This work should be useful in
understanding the nature of yarn interaction in a fabric as well as the structure-rein-

forcing mechanism of woven fabrics.

Textile testing serves the purpose of characterizing
the properties (or qualities) of textile products: for in-
stance, uniaxial fabric tensile testing provides infor-
mation about behavior under uniaxial tensile load,
whereas the fabric response towards a compressional
load is revealed by a compressional test. Along with
the development of new products and the need to better
understand the performance and behavior of these
products, new developments of textile testing in both
scope and methodology are also emerging; they are
expected to offer new or more accurate information
about textile structures.

Among all textile products, woven fabric is probably
the most used. It has a unique structure, which in most
cases consists of yarns in two systems perpendicular to
and interlaced with each other to form a system with
certain strength. The interlacing (or crossing) points
are the major locations where interactions between
yarns in the two systems take place and through which
the yarns form an interlocked structure. Without this
interaction at the interlacing points, a woven fabric
would be equivalent to sheets made of parallel but iso-
lated yarns; the resultant properties would be entirely
different from a practical fabric. In other words, this
yarn interaction at the crossing points is the essential
feature of woven fabric and will affect more or less all
the fabric properties. Therefore, yarn interaction at the
crossing points can be used as an indicator or probe of
various fabric properties, and such interaction can be
examined through a single yarn pullout test from the
fabric.
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Taylor [13] is probably the first person who analyzed
the role of yarn pullout on fabric properties. He de-
veloped a theory relating yarn interaction at crossing
points to fabric tear strength and made actual yarn
pullout tests. His work is a thorough experimental in-
vestigation of tensile and tear strengths of woven fabric,
but his theory is to a large extent a semi-empirical one
with no direct inclusion of such critical parameters as
yarn mechanical and dimensional properties. Sebastian
et al. [11, 12] also used the yarn pullout technique to
evaluate the effect of a softening agent on fabric per-
formance, and they proposed a simple model to cal-
culate pullout load and the influence of yarns crossing
over. The concept of using the yarn pullout method to
investigate fabric properties is therefore not really novel,
but the nature or mechanism of this interaction is still
poorly understood and no study has focused on it.

In a fiber composite study, on the other hand, the
single fiber pullout test has been used as one of the
most fundamental experimental approaches by which
one can analyze such issues as the nature of the inter-
phase formed between fibers and the matrix material,
the transfer of stress from matrix to fibers, and the
strength and fracture of composites. The results of fiber
pullout experiments have provided rich information
to characterize interactions between fibers and matrix.
There are numerous publications on this topic, and a
few representative papers [1, 3, 4, 6] are provided in
the reference list. Inspired by this method in a com-
posite study, one of us (Pan [9]) proposed that the
fiber pullout test and the theoretical analysis be used
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for a similar purpose—to study bonded fiber structures
such as nonwoven materials. Pan [9] demonstrated
that such a study can predict the behavior of fiber pull-
out in these systems, provide insights on interactions
between fibers by means of bonds, characterize bond
properties, and reveal and estimate important param-
eters. For the same reason, the nature of yarn inter-
actions at the interlacing points can be investigated
through a yarn pullout test from the fabric.

Although there are significant differences between
nonwoven and woven structures, Pan’s theoretical
model [9] can easily be applied to a woven fabric with
appropriate modifications. First of all, a woven fabric
is strengthened through the mechanical and frictional
interactions between yarns at the crossing points, while
a nonwoven is reinforced through the chemically
bonded points between fibers. In other words, the na-
ture of the interactions is different in the two cases.
Also, in a woven fabric, all constituents (yarns) are
arranged in only two (warp and weft) orthogonal di-
rections and interlaced with each other at right angles,
whereas in a nonwoven system, fibers orient and cross
over each other in a much more complicated manner.
Therefore Pan’s theory [9] has to be modified to reflect
these differences.

In this article, we first apply the modified theory to
the yarn pullout process to reveal the effect of yarn
interactions in fabrics, then we show the applications
of this pullout technique in characterizing fabric me-
chanical behavior. Furthermore we also explore the
connections between yarn pullout behavior and various
fabric mechanical properties.

Theoretical Aspects

A portion of a plain weave fabric structure and an
interlacing point on it are illustrated in Figure 1. From

FIGURE 1. A plain weave and the geometry of the crossing point.
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the figure, we see that the geometry of a crossing point

_can be characterized using such parameters as yarn

thickness t,, width w,, and cross-sectional area 4,. If
we consider the cross section of the yarn as an ellipse
with major axis w, and minor #,, then we have

(1)

In any discrete fibrous system, the external load can-
not be applied directly to all constituents simulta-
neously. Rather, it has to be transferred through a shear
or frictional mechanism from one constituent to an-
other. This is why the so-called shear lag theory, first
proposed by Cox [2], governing this stress transfer
process plays such an important role that almost all
fiber pullout models in composite studies are based on
it. The yarn pullout model in this paper, a modification
of the theory proposed by Pan [9] for fiber pullout
behavior from a nonwoven fabric, is also a shear lag
type, so the major assumptions associated with the
shear lag theory have to be adopted. First, during the
yarn pullout process, the extensional stress in the fabric
region (formed by the adjacent yarns) is negligible rel-
ative to that in the yarn. As a result, the distortion in
the fabric due to yarn pullout (the fabric jamming ef-
fect) is small and can be excluded in the analysis. We
have to admit that this assumption is highly idealized,
and the actual local effects are often quite severe. So
this theory applies more appropriately to fabrics with
very tight structures. In addition, if there were no yarn
interlacing at all, the yarn being pulled out would not
develop tension within; it is the other yarns interlaced
with it that offer restraint through a shear mechanism
to stretch the yarn. We therefore assume the axial ten-
sion in the yarn being pulled out is the dominant action,
and the shear stress in it is negligible compared to that
in the crossing yarns. Also excluded are the effects of
Poisson’s ratios for both the yarn and fabric during the
pullout process, so that the nature of yarn interaction
will remain unchanged during the process.

Furthermore, during the yarn pullout process, there
are two kinds of interactions between yarns occurring
at the crossing points: frictional slippage and elastic
interaction. In the former case, the analysis will become
very simple. As long as the pressure at the crossing
points is low and keeps constant, yarn pullout force
will be a constant in a fabric where the yarn surface
characteristics or frictional behaviors are given; that is,
the force will be largely independent of the embedded
yarn length as well as other yarn properties. Conse-
quently, the results will not be very informative. Our
analysis therefore focuses on the case where elastic in-
teraction takes place between yarns. This occurs again

A, = wt,w,

in the fabrics with tight structures, so that the pressure
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and interyarn friction at the crossing points are high.
As a result, interyarn friction will provide enough re-
straint for the elastic interaction to take place, so the
shear lag theory is applicable.

If we adopt Pan’s analysis [9] with certain modifi-
cations to suit our present structure, the maximum
force P,, pulling a yarn out of a single crossing point
in a fabric can be expressed as

TsWy

P, = tanh pw, , (2)

where 7 is the equivalent shear strength of the crossing
point and p is a factor,

/Gy, W, 1 G,
= —— Il — — N 3
: E, =4, nE, )

with E, being the tensile modulus of the yarn being
pulled out and G, the corresponding shear modulus of
the cross-over yarns.

For a yarn in the fabric system with embedded length
L, the total maximum pullout force becomes

W,

Py, = Int(n,L) tanh pw, , (4)
where n, is the corresponding fabric count (number of
yarns per unit fabric length), and Inf( ) is the integer
function that omits the fraction part of the result and
yields only an integer so as to reflect discrete crossing
points. The equation shows clearly that for a given
embedded yarn length, the single yarn pullout force is
a function of fabric count and yarn dimensional and
mechanical properties.

On the other hand, whether an embedded yarn ¢an
be completely pulled out from the fabric or will break
within depends on both embedded length and yarn
tensile strength. Thus a critical yarn length L = L. can
be calculated according to the equilibrium on the yarn,

(5)

where Py, is the yarn breaking load and o,, is the yarn
tensile strength. _

We should point out here that, in practice, this crit-
ical yarn length will not be a constant; it changes due
to the resulting structural distortion ignored in this
analysis. This value will also vary depending on yarn
type; Realff et al. [10] revealed that different yarn types
follow distinct failure mechanisms. This, however, can
be reflected by using the yarn parameters corresponding
to a specific yarn type in the model. In the following
discussion, we focus on the ring-spun yarns whose me-
chanical properties were provided by Pan [8]. ’

le=P1u=

oAy
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Calculation and Discussion
PREDICTING YARN PULLOUT BEHAVIOR

Among all the parameters involved, the geometric
properties of a crossing point such as yarn thickness
t,, width w,, and cross-sectional area 4, are measurable
and can hence be considered as known. On the other
hand, the yarn tensile modulus E; and shear modulus
G, can be calculated using equations provided by Pan
[8] once the fiber properties and yarn twist are given.
In the present case, since we are only concerned with
the ratio of these two moduli in calculating the factor
p from Equation 3, it is much easier to use the infor-
mation in reference 8 just to estimate the range of

G . . .

E—y. So the only parameter remaining unknown in the
) .

equations above is the equivalent shear strength 7; of

the crossing point. This parameter is difficult to mea-
sure but can be estimated based on the yarn pullout
experiment. There are two ways to estimate 7. One is
to directly use Equation 4 where all variables involved
are known except the pullout load P, and 7. So once
we obtain P, through a pullout test, we can calculate
the 7, value for that particular fabric from Equation 4.
In some cases, it is preferable to use the slope equation
provided below. We can differentiate Equation 4 to
give

TsWy

dP Im
dL

= Int(ny) tanh pw, (6)
That is, the slope of the curve of the pullout force versus
the embedded yarn length is a constant for a given
fabric as long as all the properties involved remain
constant. So again based on the experimental results,
once we know the slope of the pullout curve, we can
calculate the value for 7,.

As applied in reference 9, several nondimensional
quantities are defined here for the convenience of dis-

W)

cussion. First of all, because the product in the

equations above has the force unit, we c¢an define a
nominal restraint force of one crossing point as

TsWy

& = . (7)

¥ op
Equation 2 therefore suggests that because of limited
yarn interlace length equal to yarn thickness w,, the
pullout force P,, per crossing point is discounted by

an efficiency factor,
7, = tanh pw, ,

(8)

compared to the restraint force g, exerted on the yarn
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due to the mechanism of stress transfer through the
crossing point. When the contact length w, approaches
infinity, this discount will diminish as n, = 1.
Figure 2 depicts the effects of both modulus ratio
G e W .
E_y and yarn ellipticity t_y on the efficiency factor 7,.
y Y
In general, when yarns are stiff in shear or a yarn’s
tensile modulus is low or the yarn width-thickness ratio
is high, the crossing point will transmit stress more
efficiently, reflected by a higher 7, value.

L

! 0.2 0.4 0.6 0.8

G W, .
RIGURE 2. Effects of E’ and t—’ on the efficiency factor 7,.
i4 y

Equation 4 can be rewritten in terms of yarn tensile

stress o, according to

Pim = Int(n,L) 22 o, )

= 4,0,

. . . .. C ...
Defining a dimensionless quantity — and rewriting
Ts

Equation 9, we get

T—" = Int(nyL) (10)

s L1 yp
This gives a nondimensional or more general relation-
. . g
ship between the relative pullout stress —% and the
T,

s
embedded fiber length L as well as the yarn properties.
Figures 3 and 4 are plotted using this equation for
a parametric study about the effects of the important

&
E,
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_ ... G
factors involved, such as the moduli ratio EX and yarn
. y

cross section ellipticity 7— ¥ based on Equation 10. Here

we have used an embedded yarn length of L = 0.6 cm
and a fabric count of n, =

10/cm.

L (cm)

FIGURE 3. Relationship of the relative pullout stress and
G,
embedded yarn length at different — E

y

2 levels.

Figure 3 shows the influence of Egy on the relative -
y

. W

pullout curve at a given ellipticity 71' = 2. The curve
y

reveals that for a given yarn cross sectional area, the

moduli ratio Eg has a significant effect on the pullout
i4

. G . .
- process: a higher E—" value, representing a yarn stiffer

in shear or lower in tensﬂe modulus, will result in lower
relative stress.

. e e, W
On the other hand, the effect of ellipticity 71 of the
Y
yarn cross section on pullout force is less significant,
w
as shown in Figure 4, where ellipticity t_y is allowed to

y
alter at three different levels while the m}oduli ratio is
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FIGURE 4. Relationship of the relative pullout stress and

embedded yarn length at different ;

kept a constant (E’-’ = (0.6
. Ey

w
—Z levels.
Y

). It shows that in this case,

a greater t_y value, meaning a flatter yarn, will lead to

y g
higher relative stress.
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The actual pullout stress is limited, however, to the
value when the yarn tensile stress o, reaches its tensile
strength o,,, as illustrated in the figures. As we stated
above, this limit in turn defines a critical yarn length
L, beyond which the yarn will break inside the fabric
rather than be pulled out. This critical yarn length L,
can also be expressed explicitly using Equation 10 as

Lo= (22 TPy (11)
Ts Ny

 Since this equation has evolved from Equation 10, the

G LW
effects of both moduli ratio Ey and ellipticity % on
f

. o4
the value of this critical length L. can be seen directly

from Figures 3 and 4 if we replace the yarn tensile
stress o, with its tensile strength o,,. In a later section,
we will compare this prediction of yarn pullout critical
lengths with experimental results.

CONNECTIONS BETWEEN PULLOUT AND FABRIC
MECHANICAL PROPERTIES

As we mentioned in the beginning, because of the
importance of yarn interaction at the crossing points
to fabric structure, yarn pullout behavior should reflect
various aspects of the mechanical properties of fabrics.
To verify it, we have selected fifteen fabrics from those
used in reference, 7 ranging widely in terms of con-
struction and fiber type as shown in Table I. Their
mechanical properties were already tested in that study
following Kawabata’s definitions and are provided in
Table I1.

We used the yarn-pullout test (on warp yarns only)
on these fabrics. Figure 5a is a typical pullout curve

TABLE 1. Specifications of the fabrics.

Fabric count,

W X F Fabric weight,

No. Fabric name Fiber content Weave (no./cm) g/m?

1 print 100% cotton plain 28 X 28 106.24

2 print 100% cotton twill 28 X 28 110.27

3 denim 100% cotton twill 25 X 17 298.91

4 canvas 100% cotton -plain 28 X 17 307.88

5 flannel 100% cotton plain 18 X 17 131.81

6 flannel 100% cotton twill 18 X 12 289.17

7 . 100% wool “twill 12 X 12 256.69 -

9 gabardine 100% polyester twill 26 X 18 221.17
10 35% wool 65% polyester plain 17X 15 195.55
11 50% polyester 50% rayon twill 32 %25 ©137.67
12 100% rayon plain 42 X 31 115.72
13 taffeta (F*)* 100% silk plain 48 X 40 49.94
14 taffeta (F*) 100% polyester plain 38 X 37 81.44
15 taffeta (F*) 100% acetate plain 36 X 20 122.21

* F* = filament yarns,
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TABLE II. Test results for selected fabrics.

2HB? WT? 2HG?

Fabric Py 8 Epn, 8 g/cm MIU®g SMD} g LT* g/cm? RT?*% g/cm RC* % T, mm
1 26.16 206.00 0.44 17.08 1.59 0.92 23.37 39.74 9.42 38.33 0.51
2 11.40 111.47 0.23 30.46 2.09 0.80 21.01 42.06 427 34.96 0.66
3 49.23 153.37 2.68 23.98 227 0.91 1.93 41.95 7.39 36.42 0.99
4 717.00 930.55 4.74 21.53 1.90 0.96 2.15 43.86 16.92 41.06 1.02
5 25.52 318.78 0.86 3593 2.35 0.72 13.94 51.40 8.94 40.44 091
6 21.65 80.52 4.96 29.53 1.75 095 1.65 45.03 4.80 41.47 1.58
7 44.62 154.26 1.12 34.38 2.72 0.78 2.17 51.39 498 39.48 1.21
9 30.57 53.05 0.78 12.96 1.64 091 0.36 68.37 1.19 40.94 0.87

10 25.89 72.25 0.52 39.26 2.34 0.88 1.12 56.94 2.15 41.41 1.37
11 7.54 40.78 0.18 30.76 1.20 0.73 422 57.95 0.69 39.24 0.79
12 20.75 93.66 0.18 22.79 "1.06 0.86 2.38 62.51 6.93 36.00 0.56
13 15.74 88.75 2.13 7.64 1.15 0.77 18.37 59.85 5.99 43.28 0.27
14 83.14 165.78 0.45 5.72 1.23 0.88 37.53 58.61 8.18 55.60 0.27
15 43.57 198.86 1.68 6.34 2.32 0.95 41.66 66.85 6.58 55.55 0.35

a Kawabata’s parameter code {7].

(a) for plain weave fabric 13

1

load (g)
load (g)

displacement (cm)

FIGURE 5. Yarn pullout load versus pullout
length (experimental).

for a plain weave obtained experimentally using fabric
13, and Figure 5b is the result using twill fabric 2. We
must stress here that what these curves show is pullout
load versus pullout yarn length instead of embedded
yarn length. This differentiates the nature of Figure 5
from Figures 3 or 4. Another difference between them
is that in Figure 5, ¢he stress level is not maintained.
Consequently, there is a stress drop after the yarn 1S
pulled out of each crossing point; the curves thus consist
of peaks instead of steps as in Figures 3 and 4. Two
parameters are obtained from each pullout curve, that
is, the maximum pullout load P;, and the nominal

P
modulus of the curve E;, = f , with Pz being the
E

displacement (cm)
(b) for twill weave fabric 2

nominal elongation as indicated in Figure 5a. The re-
sults for all fabrics are provided in Table II, and each
of the data is the average of at least five test results.
Using the correlation analysis, possible connections
between the two parameters from the curves and the
corresponding fabric mechanical properties are then
reflected through the values of the correlation coeffi-
cients in Table III. Noticing the difference in pullout
behaviors between the twill structure and the plain
weave, as illustrated in Figure 5, we have calculated
the correlation coefficients separately for both fabric
groups. Table III shows that the property most closely
related to P, and Ej,, for both twill and plain fabrics
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TaBLE III. Correlations between yarn pullout data and fabric properties.
2HB MIU SMD LT WT RT 2HG RC’ T

Py . ) .

Plain 0.882 0.055 -0.075 0.333 —-0.293 —0.483 0.837 —0.145 0.358

Twill 0.274 0.195 0.727 0.385 —0.524 -0.110 0.642 0.0 0.324
Elm

Plain 0.864 0.141 -0.084 0.190 -0.214 -0.593 0.916 -0.214 0.383

Twill 0.161 0.355 0.947 0.055 0.105 —0.653 0.886 0.499 0.176

is fabric shear hysteresis 2HG, as also depicted in Fig-
ures 6a and b of the relationship between 2HG and
E,,, for both plain and twill fabric types, respectively.
This is easy to explain, since yarn pullout behavior is
mainly determined by yarn mobility within the fabric,
which is just what 2HG represents. Also, there are high
correlations between fabric bending hysteresis 2HB,

Elm (g)
1000

Y T 2HG (g/cm)
0 5 10 15 20

() for plain weave fabrics
Elm (g)

200

160 -

0 T T T
o 2 4 6

(b) for twill weave fabrics

8 2HG (g/cm)

FIGURE 6. Relationship between 2HG and E,,.

tensile resilience RT, and the two yarn pullout param-
eters for plain and twill fabrics.

It is surprising that the fabric surface frictional coef-
ficient MIU has barely any correlation with either P,
or E;,. But the other fabric surface property, surface
roughness SMD, is highly correlated with Ej,, although
for twill fabric only. This close relation between the
two is illustrated in Figure 7. Further study is certainly
desirable for more definite conclusions in terms of the
connections between yarn pullout behavior and fabric
properties.

Elm (g)
250

(for twill fabrics only)

100 4

SMD (g
4

FIGURE 7. Relationship between SMD and E,,,.

COMPARISON OF PREDICTED AND MEASURED
CRITICAL YARN LENGTHS

For practical applications, it is more convenient to
use the nominal restraint force g, as defined in Equation
7 than the equivalent shear strength 7, of a crossing

_point. Also seen from its definition, this nominal re-

straint force g, is a very critical system parameter, in-
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cluding the geometric and mechanical properties of
the yarns and representing the intensity of yarn inter-
action at a crossing point.

First of all, based on the experimentally determined
pullout load P,,, and the fabric count in filling direction
n,, we can estimate for each fabric the restraint force
gy by rearranging Equation 4 into

_ Pim _ Pim
Int(n,L) tanh pw, Int(n,L)n,

& (12)
Just as an illustration, we use here only four of the
fabrics listed in Table I. The calculated results of g, for
the four plain fabrics are shown in Table IV. In our

. . . w.
calculation, we have chosen for all four fabrics t_y
y

. . G
= 2.0 by estimation and z:’-’ = (.3 based on the result

y
in reference 8, so we have 5, = 0.5498.

Once we have a g, value, we can predict the slope
of the yarn pullout curve using
Again the results are provided in Table IV. The trend
of these predicted Ej, values is reasonably consistent
with that of the experimentally determined results,
given the fact that there is a slight difference between
the two in definition: the theoretical value is the initial
slope of the curve, and the experimental value is the
average slope of the curve as shown in Figure Sa.

As indicated in Equation 11, there is a critical value
L. for a yarn length embedded in fabric beyond which
the yarn will break within rather than be pulled out of
the fabric. The value of L. is determined by fabric and
yarn properties. Equation 11 can in fact be simplified
using Equations 5, 7, and 8 as

L. = Plu _ PluL
¢ Int(ny)gyny Py,

That is, the critical length L. is proportional to the
yarn breaking load P, and inversely proportional to
the maximum pullout load P, at a given embedded

= Int(ny)gyny (13)

(14)
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yarn length L. The maximum pullout load P;,, when
the embedded yarn length L = 0.6 cm and the yarn
breaking load P, have been experimentally determined
and are shown in Table IV. The results of critical yarn
length L., both experimentally measured and theoret-
ically predicted using Equation 14, for all four fabrics
are also shown in Table IV. Given the complexity of
yarn interactions during the pullout test and the factors
we ignored in the assumptions in developing the theory,
the predicted values are reasonably close to the exper-
imental values, and the trend of both is consistent.

Conclusions

Since yarn interaction at crossing points is the only
mechanism through which yarns in two orthogonal and
otherwise isolated systems form an interlocked fabric
system with fairly high strength, the yarn pullout test,
by overcoming resistance at crossing points, is a very
effective way to examine fabric properties both theo-
retically and experimentally. Besides yarn embedded
length, the maximum pullout load is related to yarn
geometric and mechanical properties and the corre-
sponding fabric count. For different fabric weave
structures and yarn-types, yarn pullout behaviors are
also different. The critical yarn embedded length is
proportional to the yarn tensile breaking load and in-
versely proportional to the maximum yarn pullout
force at a given embedded length.
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