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A theory to characterize the single-fibre-pull-out behaviour of bonded fibrous systems is
presented. Based on the shear-lag mechanism and the statistical-mean microstructural elements
in the systems, the theory is developed for structures in which fibers are bonded with each other
at contact points, and, as a result, the fiber-bonding with the matrix (the other fibers) is effected
through the discrete points instead of a continuous interface. A theory aimed at one single bond
is first derived, and it is then extended to the whole fiber by adding up the contributions from all
bonds on this fiber inte the result so as to predict a stepwise curve of the pull-out force and the
embedded fiber length. This theory can also be used, combined with experimental results, to
estimate the important bond properties, such as the bond shear strength 7, and the shear modulus
G,. A parametric study is carried out and illustrated in this study to reveal the effects of the
important factors involved during the fiber-pull-out process.

NOTATION*
The major symbols used in this paper are defined as follows.

1, r, and D: Fiber length, radius, and diameter, respectively
0~ Op and &, : The fiber tensile modulus, the tenstle stress in the fiber, and the fiber tensile
strength, respectively
V : The fiber volume fraction of the system
(fb and t,: The shear modulus and the shear strength of the bond between fibers,
respectively
A and ﬁI: The mean bonds on a fiber of length L and the mean bonds per unit fiber length,
respectively
b: The mean fiber length between two bond points
b, and w,: The mean length and the mean width, respectively, of the bond
t, and a,: The equivalent mean thickness of the bond and the ratio of 7, to the fiber radius
ry respectively
b The mean free fiber length between two bonds
m; The ratio of the mean free fiber length to the mean length
p,: The ratio of the mean bond length to the mean length

1. INTRODUCTION

The single-fiber-pull-out test in a fiber-composite study is one of several fundamental
experimental approaches by which such issues as the nature of the interphase between the
fiber and the matrix, the transfer of stress from matrix to fiber, and the strength and fracture
of composites can be analyzed. The results from the fiber-pull-out experiments provide rich
information in characterizing the interaction between fibers and the matrix. There have

*In this paper, the equations have been taken directly from the author’s typescriptinstead of being set in the normal
manner. The differential operator is setinitalic type () instead of roman type (d), as is the usual practice. Subscripts
to symbols are also set in italic type.
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therefore been numerous publications on this topic, and reference to a few representative
papers' is provided in this paper.

However, the same topic does not seem to have attracted much interest from the
researchers dealing with other categories of fibrous systems such as papers and nonwoven
materials, in spite of the fact that, in these systems, fibers are bonded with each other by
various means to form the porous but stable systems, and the fiber bond is also a crucial factor
in determining almost every important property of the systems. Part of the reason may be the
difficulty in actually carrying out the test: the fiber tensile strengths in these products are much
lower, and the interfacial bonds between the fiber and the matrix (the adjacent fibers) are more
complex; they are not even continuous as in composites.

Nevertheless, it has to be stressed that fiber-pull-out behaviour plays a key role in
governing the fracture process and the strength of these products. After all, it is the interfacial
bonds between fibers that generate sufficient adhesion between fibers and thus offer strength
to these structures, which would otherwise be just loose fiber assemblies bound together
through fiber entanglements and very weak cohesion between fibers. The bonds are therefore
of particular importance in determining the mechanical performance and strength of the
structures. Usually, the failure of these systems experiences three different mechanisms, i.e.
fiber breakage, the bond-points failure, and fiber pull-out. Understanding of the fiber-pull-
out behaviour of these systems will hence enable us to predict the nature of the bonds between
fibers so as to improve the quality of the products.

However, because of the significant differences between these fibrous systems and
composites, the approaches, both analytical and experimental., developed for composite study
are not readily applicable to these systems. A theory aimed specifically at such fibrous
systems is therefore developed in this paper to predict the behaviour of the fiber-pull-out
process in these systems. This theory can provide some insight into the interactions between
fibers via bonds, characterize the bond properties, and reveal and estimate the important
parameters involved. This theory should be helpful in promoting our understanding of the
properties of such fibrous systems in providing information for the prediction of the
mechanical properties and the various strengths of the fibrous structures.

2. GEOMETRY OF THE BOND STRUCTURE AND ASSUMPTIONS

A portion of a bonded fibrous structure is illustrated in Fig. 1(a). It is obvious that the
properties of such a system are determined by the bonded areas, the free fiber segments
between the bonding points, and the pores formed by fibers in the structure. Attention
therefore has to be focused first on the characterization of these microstructural elements or,
more specifically, on the investigation of the density and distribution of the bonding points
and the relative proportions of bonded portions and free fiber segments on single fibers in the
system. Because of the nature of the fibrous systems, these structural parameters vary with
the fiber size (the length [, and the diameter D = 2r), the fiber amount, and the distributions
of the fibers. We use the flfber aspectratio s(= [ /D), the fiber volume fraction v, and the fiber
orientation-density function to specify these system properties.

If we examine a typical and ideal structural element of the system in Fig. 1(b), it shows
clearly that there are three basic segments, namely, the total length between the centers of the
two adjacent bonds, the bond length, and the fiber length between the bonds. As stated above,
the dimensions of all three structural features are statistical variables, depending on the sizes
and the orientations of all fibers involved. It is therefore desirable that the statistical-mean
values of them be used as shown inFig. 1(b), where the mean fiber length between two bonds,
designated as b, consists of a bonded portion of mean length &, and a free fiber segment of
mean length b, that is: ‘

b=bhs+b (1
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Pan et al.’ have defined previously two coefficients:

by
my = —5— (2)
and
by |
L= 7 3
where
myp+pp =1 0<m <l and 0 <y <1 CY)

torepresent the relative proportions of the bond portion and the free fiber length. Two extreme
cases are when m, =0 and p = 1, when fibers are totally bonded together, whereas m = 1 and
p,=0represent the case when the bond area does not exist. All these statistical parameiers will

be determined or explained in the later sections of this paper.

{a) A typical unil in a bonded fibrous system

(¢ The structural characteristics of a bond and the pull-out force

Fig. 1 The structural characteristics of & bonded fibrous system

Considering the nature of the fibrous systems in question and the fact that the model
developed in the nextsection is in the nature of a shear-lag mechanism, the characteristics and
assumptions associated with the systems and with this mechanism have to be considered or
adopted, including first that, during the fiber-pull-out process, the extensional stress in the
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matrix (the surrounding bonded fibers) is negligible relative to that in the fiber. As a result,
the distortion in the system due to fiber pull-out is small and excluded in the analysis.
Secondly, the shear stress in the fiber is in turn negligible compared with that in the bond
material, in other words, the shear deformation mainly takes place in the bond material
between fibers.

One important parameter is therefore the thickness of the bond. Although, as shown in
Fig. 1(c), the thickness of the bond material is not constant, for conciseness, we can always
calculate an equivalent mean thickness, ¢, and further assume, without losing generality, that
this thickness is proportional to the fiber radius T Le.:

ty = a7y &)
where a, is a constant to be determined.

Also excluded is the effect of the fiber Poisson’s ratio during the pull-out process, so that
the nature of the fiber-bond interaction will not change during the process.

Ithasto be emphasized that what are illustrated in Figures 1(b) and 1(c) are highly idealized
situations, as are the assumptions associated with the present theory. For the cases where the
fiber cross-section or the fiber-bond geometry is irregular, the present theory is still valid as
long as the statistical mean values of these parameters are used.

3. THEORETICAL ANALYSIS OF THE PULL-OUT PROCESS

Most fiber-pull-out models on composites are variations of a model developed by Greszczuk?,
which in turn is based on the well-known shear-lag theory. The theory proposed in this study
also follows a similar theoretical frame but is significantly different from the previous ones
owing to the differences of the present system.

From Fig. 1(c), showing the typical bond point, whose dimensions include the bond
thickness r,, length b, and width w,. we have:

wy = \/(by — D)2 + D? ©)

If we ignore the stress variation over the fiber cross-section. we can set the central line of
the bond width as the co-ordinate system x, as shown in Fig. 1(c). Suppose there is a pull-out
force P at one end of the fiber, which causes a tension F on the fiber. The equilibrium of forces
acting on an element dx of the fiber requires:

dF

"(E psed 'IU[,T (7)

where 7 is the shear stress developed in the bond. The tensile strain in the fiber is given by:

d F
€y = —u = = 7 (8)
dz  Eymr 7
where u is the displacement. The shear strain in the bond area is:
u (9)

=
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and the shear stress is, by definition:

uGG
,:»fc{):‘t_j (10)

Substituting Equation (10} into Equation (7) to eliminate T and differentiating the resultant
equation with respect to x, we obtain:

%2;; =p'F an
where p is a factor given by:
_ [Gb (12)
The solution of Equation (11) is:
F = Cysinhpz + Cycosh pz (13)

where C, and C, are the integration constants and can be determined from the following
boundary conditions:

F=PFP when z1=10; F=0 when 1= z';b (14

The final solution for the shear stress at x of the bond point is:

P -
T = w—p(sinh pr — coth pby, cosh pz) (15)
b

The pull-out force P can thus be obtained from this equation as a function of, among other
parameters, the shear stress T.

The maximum pull-out force due to this single bond is dependent on the failure strength
of the bond. There are two approaches to determine the failure strength of the interfacial bond,
as was pointed out by Kim ez al.®: one is based on the maximum-shear-stress criterion such
that bond failure will take place when the bond shear stress exceeds the bond shear strength;
the other is based on the concept of fracture mechanics, where the debonded zone is
considered as an interfacial crack, and its extension is dependent on the energy criterion’s
being satisfied. If we choose the former approach, the maximum pull-out force P_ can be
found when this shear stress reaches the shear strength of the bond 1, i.e.

me) -

{sinh pz — coth pby, cosii px) (16

Ty =
wy

and the maximum shear stress occurs at x = 0, where:

P, = bt tanh pby, (17)
14
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If a fiber of length lfis totally embedded in the system, the total maximum pull-out force will
be:

ThWp

Py =n tanh pb,,

(18)

For a fiber in the systemn with embedded length L, the total maximum pull-out force becomes:

THWwy

P = Int(s; L) - > tanh pby, (19)
f

where In() is the integer function which omits the fractional part of the result and yields only
the integer so as toreflectthe discrete bonds. It is shown clearly in the equation that, fora given
embedded fiber length, the single-fibre-pull-out force is a function or an indicator of the
number of bonds, the fiber thickness, and the fiber and bond properties.

On the other hand, whether an embedded fiber can be completely pulled-out from the
matrix or break within it will depend on both the embedded length and the fiber tensile
strength. Thus a critical fiber length L = L _is calculated according to the equilibrium on the
fiber:

9
Ijt'm - Uful'-rr? (20)

where S, 1s the fiber tensile strength.
4, THE MICROSTRUCTURAL CHARACTERISTICS OF THE RANDOM
FIBROUS SYSTEMS

To calculate the pull-out force by using the above equations, we need to know the parameters
related to the microstructural characteristics of the system, such as the mean number of bonds
per unit fiber length 7, and the mean length b,.

Although extensive work has been done on the microstructure analysis of paper by
Kallmes and his colleagues”®, by Page er al *'%, and by Perkins e7 al.!'*2, and also on textile
structures by van Wyk*?, studying the mechanical properties of a fiber mass by looking into
the microstructural units in the system, a far more general and elegant piece of research on
this aspect was carried out by Komori and Makishima®®, who have pioneered an approach
dealing with the microstructural characterization of fibrous assemblies. However, during the
application of this theory, some problems associated with it have been revealed'>'S, Recently,
there has been a study by the present author!” which shows that Komori and Makishima’s
prediction of the number of fiber contact points 1s too high, leading to a much shorter mean-
fibre-length value. Also in this study, the author has developed a modified theory by which
the key variables in characterizing different fibrous systems have been predicted. These
resulis are used here as a basis for the present work.,

According to the present author’s predictions’’, for a three-dimensional fiber system where
all fibers are oriented randomly with no preferred direction and bonded together to form the
system, the mean number of bonds on an arbitrary fiber has been given as:

R 4sV;
1=
Ry n
the mean number of bonds per unit fiber length is:
N\
T DR V) 22)
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and the mean length between the two bonds is:

N
p DTV 23)
4Vf

In addition, the ratio of the mean free fiber length to the mean length between two bonds is:

27V
=1 2V )
2+ ?(Vf
and the ratio of bond length becomes
2nVy
= ]~ myp = W (25)

For a planar random-fiber network, the results will be different from those in a 3D system
because the thickness of the system is restricted to twice the fiber diameter. The mean
numbers of bonds on an arbitrary fiber now becomes from the earlier work'”:

_ 16msVy
T+ 164V

7i (26)
where A is a constant related only to the fiber dimensions as:

-csinf 2

arcsin{ P )

A= ln[cot(—2——)] 27

the mean number of bonds per unit fiber length is:

167V,
D(md + 16AVy)

1 =

(28)

and the mean length between the two bonds is:

D(7% + 16AV))
167 Vs

b= (29)

Furthermore, the ratio of the mean free fiber length to the mean length between two bonds
becomes:

= 1 32AV;
’ ™ + 16AV; (30)
and the ratio of bond lengths:
T+ 164 Vf
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As stated above, because the thickness in a 2D system is limited to only twice the fiber
diameter, this leads to differences in these microstructural characteristics. For example, the
values of the mean length between two bonds b for 3D and 2D systems are not the same and
the ratio of them,

(3D) _ 4m(2 4 7V))
(2D) ~ 7 + 16AV; (32)

[l Rl |

1s related to both the fiber volume V., (the fiber amount) and the fiber size as represented by
the factor A. These relations are illustrated in Fig. 2.

bap)

‘b

0.8
0.7571
0.7
0.6571
0.671
0.551
0.5
0.45

f t t t VFf
0.2 0.4 0.6 0.8
Fig.2 Effects of V, and s on the ratio of b values of 3D and 2D systems

From this figure, b for a 3D system is always smaller than the corresponding value for a
2D system. This difference will increase when either the fiber volume fraction or the fiber
aspect ratio s increases. On the other hand, the ratio of the bond lengths of the two systems

by(3D)  7*

! = 33
by(2D) 1A 33

is independent of the fiber volume fraction and is determined only by the fiber size. Fig. 3
shows the relation of this ratio to the fiber aspect ratio. It is clear that, for the same fiber size,
this value for a 3D system is always smaller than that for a 2D system. When the fiber becomes
shorter or thicker, this difference reduces.
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Fig. 3 Effect of s on the ratio of.r‘;h values of 3D and 2D systems

In the following analysis, we focus only on the 3D system, and, because of the direct
connections between the two systems as indicated in Equation (33), all conclusions in the
following sections can be easily extended to a 2D case. We thus have from Equations (23) and
(25) the expression for the statistical mean bond length of a 3D system as:

by = p,b == (34)

5. CALCULATIONS AND DISCUSSION

It now has been shown that a bond such as the one in Fig. 1(c) can be characterized by the
geometrical parameters, such as the bond thickness 7, length b,, and width w, and the
mechanical properties, including the bond shear modulus G, and the shear streng{h t,. The
parameters 5 and width w, can be directly calculated by usin g Equations (6) and (34) once
the fiber dlameter D s given. The bond thickness 1,, on the other hand, has to be determined
by relying on actual measurement for different systems or products.

The bond shear modulus G, and the shear strength T, are difficult to measure and seldom
measured accurately. They can, however, be estimated with reasonable accuracy by using the

480 J. Text. Inst., 1993, 84 No. 3 Texiile instinue



Theoretical Modeling and Analysis of Fiber-pull-out Behaviour from a Bonded Fibrous Matrix

theory. If we differentiate Equation (19) to give:

dP N _ L TLI0p
glim _ Tt () —
r

tanh f)g;g, (35)

we find that the slope of the curve of the pull-out force plotted against the embedded fiber
length is a constant. Note that, for a given system, n,, w,, and b are considered to be known.
Hence, on the basis of the experimental results, the two parameter% G, (through the factor p)
and T, can be determined from the results by using Equations (19) and (35).

For generality and ease of discussion, it is preferable to form some non-dimensional
quantities in the resultant equations. First of all, since the quantity T,w,/p has the units of force,
Equation (17) therefore suggests that, because of the limited bond length 5 . the pull-out force

P_is discounted by an efficiency factor:

m = tanh pby (36)

compared with the constant reswaining force t,w,/p exerted on the fiber, owing to the
mechanism of stress transfer through the bond. When the bond length b, , approaches infinity,
this discount will diminish as 1), — 1.

My

ai=0.1

tb=aix 1t

. ) Gy

0.2 0.4 0.6 0.8 ™
Fig.4  Effects of G/E and a on the efficiency factor n

Fig. 4 depicts the effects of both the modulus ratio G,/E and the bond thickness £, on the
efficiency factor),. In general, when the bond material is stiff in shear, or the fiber’s Young’s
modulus is low, or the bond thickness is small, the bond will transmit the stress more
efficiently, reflected by a high 1, value.

Equation (19) can be rewritten in terms of the fiber tensile stress S, according to:

J. Teus Insi., 1993, 84 No. 3 Textile Inscirute 481



Pan

_ . TLWy -
Pr = Inthy L)~ = wr;

7y (37)
Defining a dimensionless quantity 6,/t, in Equation (22), the equation becomes:

2Vy L wy

\

- z’nt(ﬁ;L)—-w—?;;b = Int(
P

Th W'Tf 1 (38)

(2+ wi’:r}ggfrrfpf

This gives a non-dimensional or a more general relationship between the relative pull-out
stress G, /1, and the relative embedded fiber length L/r,as well as the fiber- and bond-material
properties.

Figures 5 and 6 are plotted by using this equation for a parametric study on the effects of
the important factors involved. Fig. 5 corresponds to the fixed fiber volume fraction V.= 0.6
and the bond thickness ¢, = a,r, where a, = 0.8. Because of the discrete distribution of all the
bond points, the curves we have are not smooth but follow a stepwise path along with the
fiber-length increment. itisshown in the figure that the pull-out force increases proportionally
with the embedded fiber length. Moreover, when we increase the ratio G JE meaning astiffer
bond in shear or a lower fiber tensile modulus, for the same embedded fiber length, less force
is required to pull it out of the matrix. The difference between Figures 5 and 6 is that, in Fig.
6, the fiber volume fraction is allowed to change, the modulusratio is fixed at G/E =02, and
the bond thickness 1, is still equal to = 0.8r, This figure indicates that, for a given embedded
fiber length, a high force will be required 1o pull the fiber out when there are more fibers in
the system (i.e. a higher V).

or

e

o

8(;

L

25 50 75 100 125 150 175 200w

Fig.5  Relationship between the relative pull-out stress and embedded fiber length at different G /£ levels
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Fig.6  Relationship between the relative pull-out stress and embedded fiber length at different V, levels.

However, the actual pull-out force is limited to the value when the fiber tensile stress g,
reaches its tensile strength ¢, as is illustrated in the figures. This limit in turn defines the
critical fiber length L _or the cmlc:al fiber aspect ratio s, beyond which the fiber will break
inside the matrix rather than be pulled out. This critical fiber length L_or the critical fiber
aspect ratio s_can also be expressed explicitly by a result derived from Equation (38) as:

Se =

2+ 7V TP

.
- = Int —_—
( Ve  wpmy T

L (39)
D

Since this equation is aresult evol ved from Equation (38), the effects of the modulus ratio G,/
E_and the fiber volume fraction V, on the value of this critical fiber aspect s can be seen
dlrectly from Figures 5 and 6 if we replace the fiber tensile stress ¢, by the tensile strength o, .
We also show the relationship between s_and the bond thickness 1, = a r,in Fig. 7. It indicates
that the value of s decreases with an increase in the r, value. This mﬂuence becomes more
significant at hlgher values of the strength ratio o, /‘r

6. CONCLUSION

For a given fiber volume fraction of randomly distributed fibers, a 3D system corresponds to
a shorter bond length than that of a 2D system, and the ratio between them is dependent on
the fiber size. The bond thickness 1, 1s a very crucial parameter in determining the mechanical
behaviour of the system.
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Fig.7 Relationship between the critical fiber aspect ratio s_and the bond-thickness factor ¢, at different V,

levels

Statistically, the pull-out force in the fibrous systems dealt with in this study is proportional
to the embedded fiber length. This is due to the constant mean bond length by which the stress
transfer between the matrix and the fiber is achieved. The discontinuity of the distribution of
the bonds on fibers is reflected on the curve in a stepwise form of the relation between pull-
out force and embedded fiber length. The pull-out force 15 also related to the fiber tensile
modulus, the fiber diameter, the bond shear modulus. and the fiber volume fraction. Finally.
the present theory can be used to estimate the bond shear strength t, and the shear modulus
G

h
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