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A theory to characterize the single-fibre-puU-out behaviour of bonded fibrous systems is 
presented. Based on the shear-lag mechanism and the statistical-mean microstructural elements 
in the systems, the theory is developed for structures in which fibers are bonded with each other 
at contact points, and, as a result, the fiber-bonding with the matrix (the other fibers) is effected 
through the discrete points instead of a continuous interface. A theory aimed at one single bond 
is first derived, and it is then extended to the whole fiber by adding up the contributions from all 
bonds on this fiber into the result so as to predict a stepwise curve of the pull-out force and the 
embedded fiber length. This theory can also be used, combined with experimental results, to 
estimate the important bond properties, such as the bond shear strength T" and the shear modulus 
G" A parametric study is carried out and illustrated in this study to reveal the effects of the 
important factors involved during the fiber-puD-out process. 

NOTATION* 

The major symbols used in this paper are defined as follows. 


I r
f 

and D: Fiber length. radius, and diameter, respectively 
E cr and {Ift<: The fiber tensile modulus, the tensile stress in the fiber. and the fiber tensile 

f f
strength, respectively 
V' The fiber volume fraction of the system 
~ and 't'b: The shear modulus and the shear strength of the bond between fibers, 
respectively 
ii and n; The mean bonds on a fiber of length lfand the mean bonds per unit fiber length. 
respectively 
b: The mean fiber length between two bond points 
bb and Wb: The mean length and the mean width, respectively, of the bond 
tb and a 1: The equivalent mean thickness of the bond and the ratio of tb to the fiber radius 
~}f' respectively
or The mean free fiber length between two bonds 
m : The ratio of the mean free fiber length to the mean length t
P,: The ratio of the mean bond length to the mean length 

1. INTRODUCTION 
The single-fiber-pull-out test in a fiber-composite study is one of several fundamental 
experimental approaches by which such issues as the nature of the interphase between the 
fiber and the matrix, the transfer of stress from matrix to fiber. and the strength and fracture 
of composites can be analyzed, The results from the fiber-pull-out experiments provide rich 
information in characterizing the interaction between fibers and the matrix. There have 
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therefore been numerous publications on this topic, and reference to a few representative 
papersl-4 is provided in this paper. 

However, the same topic does not seem to have attracted much interest from the 
researchers dealing with other categories of fibrous systems such as papers and nonwoven 
materials, in spite of the fact that, in these systems, fibers are bonded with each other by 
various means to form the porous but stable systems, and the fiber bond is also a crucial factor 
in determining almost every important property of the systems. Part of the reason may be the 
difficulty in actually carrying out the test: the fiber tensile strengths in these products are much 
lower, and the interfacial bonds between the fiber and the matrix (the adjacent fibers) are more 
complex; they are not even continuous as in composites. 

Nevertheless, it has to be stressed that fiber-pull-out behaviour plays a key role in 
governing the fracture process and the strength of these products. After all, it is the interfacial 
bonds between fibers that generate sufficient adhesion between fibers and thus offer strength 
to these structures, which would otherwise be just loose fiber assemblies bound together 
through fiber entanglements and very weak cohesion between fibers. The bonds are therefore 
of particular importance in determining the mechanical performance and strength of the 
structures. Usually, the failure of these systems experiences three different mechanisms, i.e. 
fiber breakage, the bond-points failure, and fiber pull-out. Understanding of the fiber-pull­
out behaviour of these systems will hence enable us to predict the nature of the bonds between 
fibers so as to improve the quality of the products. 

However, because of the significant differences between these fibrous systems and 
composites, the approaches, both analytical and experimental, developed for composite study 
are not readily applicable to these systems. A theory aimed specifically at such fibrous 
systems is therefore developed in this paper to predict the behaviour of the fiber-pull-out 
process in these systems. This theory can provide some insight into the interactions between 
fibers via bonds, characterize the bond properties, and reveal and estimate the important 
parameters involved. This theory should be helpful in promoting our understanding of the 
properties of such fibrous systems in providing information for the prediction of the 
mechanical properties and the various strengths of the fibrous structures. 

2. GEOMETRY OF THE BOND STRUCTURE AND ASSUMPTIONS 

A portion of a bonded fibrous structure is ill ustrated in Fig. I (a). It is obvious that the 
properties of such a system are determined by the bonded areas, the free fiber segments 
between the bonding points, and the pores formed by fibers in the structure. Attention 
therefore has to be focused first on the characterization of these microstructural elements or, 
more specifically, on the investigation of the density and distribution of the bonding points 
and the relative proportions ofbonded portions and free fiber segments on single fibers in the 
system. Because of the nature of the fibrous systems, these structural parameters vary with 
the fiber size (the length l and the diameter D 2r ), the fiber amount, and the distributions r
of the fibers. We use the i{ber aspect ratio s(= lJD), the fiber volume fraction VI' and the fiber 
orientation-density function to specify these system properties. 

If we examine a typical and ideal structural element of the system in Fig. I (b), it shows 
clearly that there are three basic segments, namely, the total length between the centers of the 
two adjacent bonds, the bond length, and the fiber length between the bonds. As stated above, 
the dimensions of all three structural features are statistical variables, depending on the sizes 
and the orientations of all fibers involved. It is therefore desirable that the statistical-mean 
values ofthem be used as shown in Fig. l(b), where the mean fiber length between two bonds, 
designated as ii, consists of a bonded portion of mean length b, and a free fiber segment of 
mean length ii!, that is: .J 

(1) 
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Pan et al. 5 have defined previously two coefficients: 

(2) 

and 

PI (3) 

where 

m, + PI = 1 o::; ml ::; 1 (Lnd 0::; Jil ::; 1 (4) 

to represent the relative proportions of the bond portion and the free fiber length. Two extreme 
cases are when m

l 
=0 and PI = I, when fibers are totally bonded together, whereas m

l 
I and 

PI =0 represent the case when the bond area does not exist. All these statistical parameters will 
be determined or explained in the later sections of this paper. 

(a) A Iypical unit in a bonded fibrous system 

,bb h f 
:~.----~--~~~ 
, 

(b) The struclural characteristics of a fiber element 

pP D 

(c) The structural characteristics of a bond and the pull-out force 

Fig. 1 The structural characteristics of a bonded fibrous system 

Considering the nature of the fibrous systems in question and the fact that the model 
developed in the next section is in the nature ofa shear-lag mechanism, the characteristics and 
assumptions associated with the systems and with this mechanism have to be considered or 
adopted, including first that, during the fiber-pull-out process, the extensional stress in the 
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matrix (the surrounding bonded fibers) is negligible relative to that in the fiber. As a result, 
the distortion in the system due to fiber pull-out is small and excluded in the analysis. 
Secondly, the shear stress in the fiber is in turn negligible compared with that in the bond 
material, in other words, the shear deformation mainly takes place in the bond material 
between fibers. 

One important parameter is therefore the thickness of the bond. Although, as shown in 
Fig. I (c), the thickness of the bond material is not constant, for conciseness, we can always 
calculate an equivalent mean thickness, tIJ' and further assume. without losing generality, that 
this thickness is proportional to the fiber radius rr i.e.: 

(5) 

where a is a constant to be determined.
1 

Also excluded is the effect of the fiber Poisson's ratio during the pull-out process, so that 
the nature of the fiber-bond interaction will not change during the process. 

It has to be emphasized that what are illustrated in Figures I (b) and I(c) are highly idealized 
situations, as are the assumptions associated with the present theory. For the cases where the 
fiber cross-section or the fiber-bond geometry is irregular, the present theory is still valid as 
long as the statistical mean values of these parameters are used. 

3. THEORETICAL ANALYSIS OF THE PULL-OUT PROCESS 

Most fiber-pull-out models on composites are variations ofa model developed by Greszczuk2
, 

which in turn is based on the well-known shear-lag theory. The theory proposed in this study 
also follows a similar theoretical frame but is significantly different from the previous ones 
owing to the differences of the present system. 

From Fig. l(c), showing the typical bond point, whose dimensions include the bond 
thickness t

h
, length b

h
, and width wI>' we have: 

(6) 


If we ignore the stress variation over the fiber cross-section. we can set the central line of 
the bond width as the co-ordinate system x, as shown in Fig. I (c). Suppose there is a pull-out 
force P at one end of the fiber, which causes a tension F on the fiber. The equilibrium offorces 
acting on an element dx of the fiber requires: 

dF (7)=WI! T
dx 

where l' is the shear stress developed in the bond. The tensile strain in the fiber is given by: 

du F 
(8)f.f = dx 

where u is the displacement. The shear strain in the bond area is: 

(9) 
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and the shear stress is, by definition: 

(10) 

Substituting Equation (10) into Equation (7) to eliminate "C and differentiating the resultant 
equation with respect to x, we obtain: 

F (11) 

where p is a factor given by: 

(12)p= 

The solution of Equation (11) is: 

F = C[ sinh pI. + C2 cosh px (13) 

where CI and C
2 

are the integration constants and can be determined from the following 
boundary conditions: 

F = P when I. 0: F = 0 when x = I~ ( 14) 

The final solution for the shear stress at x of the bond point is: 

Pp ­
I = (sinh pI. - coth (!bb cosh pI.) (15)

Wb 

The pull-out force P can thus be obtained from this equation as a function of, among other 
parameters. the shear stress "C. 

The maximum pull-out force due to this single bond is dependent on the failure strength 
of the bond. There are two approaches to determine thefailure strength of the interfacial bond, 
as was pointed out by Kim et al. 6: one is based on the maximum-shear-stress criterion such 
that bond failure will take place when the bond shear stress exceeds the bond shear strength; 
the other is based on the concept of fracture mechanics, where the debonded zone is 
considered as an interfacial crack, and its extension is dependent on the energy criterion's 
being satisfied. If we choose the former approach, the maximum pull-out force Pm can be 
found when this shear stress reaches the shear strength of the bond "C

b
, i.e.: 

P11lP I . 1 1 b- .' )'b = --\sm 1 pI. - cot 1 (! /) COSl1 (iT. (16) 
Wb 

and the maximum shear stress occurs at x =0, where: 

(17) 
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If a fiber of length If;s totally embedded in the system, the total maximum pull-out force will 
be: 

(18) 

For a fiber in the system with embedded length L, the total maximum pull-out force becomes: 

( 19) 

where IntO is the integer function which omits the fractional part of the result and yields only 
the integer so as to reflect the discrete bonds. It is shown clearly in the equation that, for a given 
embedded fiber length, the single-fibre-pull-out force is a function or an indicator of the 
number of bonds, the fiber thickness, and the fiber and bond properties. 

On the other hand, whether an embedded fiber can be completely pulled-out from the 
matrix or break within it will depend on both the embedded length and the fiber tensile 
strength, Thus a critical fiber length L ::: Lc is calculated according to the equilibrium on the 
fiber: 

(20) 

where crfo is the fiber tensile strength. 

4. THE MICROSTRUCTURAL CHARACTERISTICS OF THE RANDOM 
FIBROUS SYSTEMS 
To calculate the pull-out force by using the above equations, we need to know the parameters 
related to the microstructural characteristics of the svstem, such as the mean number ofbonds 
per unit fiber length n

l 
and the mean length bb' ­

Although extensive work has been done on the microstructure analysis of paper by 
Kallmes and his colleagues7,8, by Page et aI. 9•1O, and by Perkins et ai, 11,12, and also on textile 
structures by van Wyk 13

, studying the mechanical properties of a fiber mass by looking into 
the microstructural units in the system, a far more general and elegant piece of research on 
this aspect was carried out by Komori and Makishima14

, who have pioneered an approach 
dealing with the microstructural characterization of fibrous assemblies, However, during the 
application of this theory, some problems associated with it have been revealed15

•
16

, Recently, 
there has been a study by the present author17 which shows that Komori and Makishima's 
prediction of the number of fiber contact points is too high, leading to a much shorter mean­
fibre-length value. Also in this study, the author has developed a modified theory by which 
the key variables in characterizing different fibrous systems have been predicted. These 
results are used here as a basis for the present work. 

According to the present author's predictions 17, for a three-dimensional fiber system where 
all fibers are oriented randomly with no preferred direction and bonded together to form the 
system, the mean number of bonds on an arbitrary fiber has been given as: 

4sVr 
11= ' (21)2 + nYf 

the mean number of bonds per unit fiber length is: 

-1 Vr 
Tl( = ) (22)D(2 + 71'Vf ) 
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O.~ 

(26) 

where A is a constant related only to the fiber dimensions as: 

O ::... 
arcsin( f2) 	 • y 

A = In[cot( 2 f )] 	 (27) 

the mean number of bonds per unit fiber length is: n :::. 
J. 

(28) 	

O . ' .":--
. 

and the mean length between the two bonds is: 

(29) 
Fig, 2 F:'" '. 
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As stated above, because the thickness in a 2D system is limited to only twice the fiber 
diameter, this leads to differences in these microstructural characteristics. For example, the 
values of the mean length between two bonds bfor 3D and 2D systems are not the same and 
the ratio of them, 

b(3D) 4rr (2 + rr VI ) 
= (32)b(2D) rrJ + IGA VI 

is related to both the fiber volume V/the fiber amount) and the fiber size as represented by 
the factor A. These relations are illustrated in Fig. 2. 

b(3D) 

b(2D) 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

0.2 10.4 0.6 0.8 Vf 

Fig. 2 Effects of V, and s on the ratio of Evalues of 3D and 20 systems 

From this figure, b for a 3D system is always smaller than the corresponding value for a 
2D system. This difference will increase when either the fiber volume fraction or the fiber 
aspect ratio s increases. On the other hand, the ratio of the bond lengths of the two systems 

,) 

7]"­

(33)
4A 

is independent of the fiber volume fraction and is determined only by the fiber size. Fig. 3 
shows the relation of this ratio to the fiber aspect ratio. It is clear that, for the same fiber size, 
this value for a 3D system is always smaller than that for a 2D system. When the fiber becomes 
shorter or thicker, this difference reduces. 
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In the following analysis. we focus only on the 3D system, and, because of the direct 
connections between the two systems as indicated in Equation (33), all conclusions in the 
following sections can be easily extended to a 2D case. We thus have from Equations (23) and 
(25) the expression for the statistical mean bond length of a 3D system a<;: 

7fD (34) 
2 

5. CALCULATIONS AND DISCUSSION 

It now has been shown that a bond such a<; the one in Fig, I (c) c~n be characterized by the 
geometrical parameters, such as the bond thickness t

b 
, length hI>' and width w

b
' and the 

mechanical properties, including the bond shear modulus G. and the shear strength "Ct' The 
parameters Db and width Wb can be directly calculated by usi~g Equations (6) and (34) once 
the fiber diameter D is given. The bond thickness t , on the other hand, has to be determined 

b
by relying on actual measurement for different systems or products. 

The bond shear modulus G
b 

and the shear strength 'tb are difficult to measure and seldom 
measured accurately. They can, however, be estimated with reasonable accuracy by using the 
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theory. If we differentiate Equation (19) to give: 

(35) 

we find that the slope of the curve of the pull-out force plott~d against the embedded fiber 
length is a constant. Note that, for a given system, ~, wb' and bb are considered to be known. 
Hence, on the basis of the experimental results, the two parameters G b (through the factor p) 
and "t

h 
can be determined from the results by using Equations (\9) and (35). 

For generality and ease of discussion, it is preferable to form some non-dimensional 
quantities in the resultant equations. First ofall, since the quantity "tbwjp has the units offorce, 
Equation (17) therefore suggests that, because of the limited bond length lib' the pull-out force 
Pm is discounted by an efficiency factor: 

(36) 

compared with the constant restraining force "thwjP exerted on th£ fiber, owing to the 
mechanism ofstress transfer through the bond. When the bond length bb approaches infi nity, 
this discount will diminish as 110 ~ 1. 

11b 
31 = 0.1 

1 
31 =0.8 

0.8 

0.6 

8.4 

nv. 2 

Gb 

0.2 0.4 0.6 0.8E( 
Fig. 4 Effects of G/Efand a, on the efficiency factor l1b 

Fig. 4 depicts the effects of both the modulus ratio GjEJand the bond thickness to on the 
efficiency factor11 

b
• In general, when the bond material is stiff in shear, or the fiber's Young's 

modulus is low, or the bond thickness is small, the bond will transmit the stress more 
efficiently, reflected by a high 11b value. 

Equation (19) can be rewritten in terms of the fiber tensile stress cr according to:
f 
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Defining a dimensionless quantity a/'C in Equation (22), the equation becomes: 
b 

(38) 

This gives a non-dimensional or a more general relationship between the relative pull-out 
stress a/T

b 
and the relative embedded fiber length Urfas well as the fiber-and bond-material 

propertIes. 
Figures 5 and 6 are plotted by using this equation for a parametric study on the effects of 

the important factors involved. Fig. 5 corresponds to the fixed fiber volume fraction V
f 
= 0.6 

and the bond thickness tb alr where G] = 0.8. Because of the discrete distribution of all the 
f 

bond points, the curves we have are not smooth but follow a stepwise path along with the 
fiber-length increment. It is shown in the figure that the pull-out force increases proportionally 
with the embedded fiber length. Moreover, when we increase the ratio ClEf meaning a stiffer 
bond in shear or a lower fiber tensile modulus, for the same embedded fiber length, less force 
is required to pull it out of the matrix. The difference between Figures 5 and 6 is that, in Fig. 
6, the fiber volume fraction is allowed to change, the modulus ratio is fixed at G/E = 0.2, and

f 
the bond thickness tb is still equal to =0.8r[ This figure indicates that, for a given embedded 
fiber length, a high force will be required to pull the fiber out when there are more fibers in 
the system (i.e. a higher Vf)' 
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Fig. 5 Relationship between the relative pull·out stress and embedded fiber length at different G/l:,~ levels 

482 I Tex!. [nsf., 1993. 84 No.3 Textile institute 

Fig. 6 k:. 

Ho~C\ ~.. 
reache, J!, ._ 


critical ii~': 


inside the' 


aspect r..1t 


Sinccth;· .. 

E and t~.c· . -•. 


fdirect I \ : - . 

Weal",,:- .. 
that th( .. : 
sigmti,.: . 

6. CO,,( I 1 .... [f " 

For d .', 

a sh,)nc ~ 
the fl~'r • 

beha\,,',.: 

J Tn;; ... 



Theoretical Modeling and Analysis ofFiber-pull-out Behaviour from a Bonded Fibrous Matrix 
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Fig. 6 Relationship between the relative pull-out stress and embedded fiber length at different V[ levels. 

However, the actual pull-out force is limited to the value when the fiber tensile stress a
f 

reaches its tensile strength aft<' as is illustrated in the figures. This limit in turn defines the 
critical fiber length L, or the critical fiber aspect ratio sc' beyond which the fiber will break 
inside the matrix rather than be pulled out. This critical fiber length L, or the critical fiber 
aspect ratio s, can also be expressed explicitly by a result derived from Equation (38) as: 

"J
Lc (2+ )7fTip(J( 

8 c = D' = [nt(--4-V:-,(-'---!-~) (39) 
• Wb1Jb To 

Since this equation is a result evolved from Equation (38), the effects of the modulus ratio G/ 
E( and the fiber volume fraction V

f 
on the value of this critical fiber aspect sc< can be seen 

directly from Figures 5 and 6 if we replace the fiber tensile stress afbY the tensile strength aft<. 
We also show the relationship between Sc and the bond thickness II! a/rin Fig. 7.It indicates 
that the value of s" decreases with an increase in the tb value. This influence becomes more 
significant at higher values of the strength ratio crt/'th' 

6. CONCLUSION 

For a given fiber volume fraction of randomly distributed fibers, a 3D system corresponds to 
a shorter bond length than that of a 2D system, and the ratio between them is dependent on 
the fiber size. The bond thickness tb is a very crucial parameter in determining the mechanical 
behaviour of the system. 
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Fig. 7 	 Relationship between the critical fiber aspect ratio s. and the bond·thickness factor (it at different ~', 

levels 

Statistically, the pull-out force in the fibrous systems dealt with in this study is proportional 
to the embedded fiber length. This is due to the constant mean hond length by which the stress 
transfer between the matrix and the fiber is achieved. The discontinuity of the distrihution of 
the bonds on fibers is reflected on the curve in a stepwise form of the relation between pull­
out force and embedded fiber length. The pull-out force is also related to the fiber tensile 
modulus, the fiber diameter, the bond shear modulus. and the fiber volume fraction. Finally. 
the present theory can be used to estimate the bond shear strength I" and the shear modulus 
G/>. 
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