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ABSTRACT

This article reports an attempt to develop a general constitutive theory governing
the mechanical behavior of twisted short fiber structures, starting with a high twist
case, so that the effect of fiber slippage during yarn extension can be ignored. A dif-
ferential equation describing the stress transfer mechanism in a staple yarn is proposed
by which both the distributions of fiber tension and lateral pressure along a fiber length
during yarn extension are derived. Factors such as fiber dimensions and properties

and the effect of the discontinuity of fiber length within the structure are all included

in the theory. With certain assumptions, the relationship between the mean fiber-
volume fraction and the twist level of the yarn is also established. A quantity called
the cohesion factor is defined based on yarn twist and fiber properties as well as on
the form of fiber arrangement in the yarn to reflect the effectiveness of fiber gripping
by the yarn. By considering the yarn structure as transversely isotropic with a variable

fiber-volume fraction depending on the level of twist, the tensile and shear moduli as -
well as the Poisson’s ratios of the structures are theoretically determined. All these

predicted results have been verified according to the constitutive restraints of the con-

tinuum mechanics, and the final results are also illustrated schematically.

Since 1940, there have been extensive developments
and improvements in the analysis of yarn mechanical
behavior. Research work on yarn mechanics has been
reviewed in ‘monographs by Hearle, Grosberg, and
Backer [10], Zurek [25], Postle, Carnaby, and De Jong
[20] and in an extensive review article by Backer [1].
More specifically, yarn tensile strength and tensile be-
havior are the properties that have been studied most
extensively, and as a result, there is a considerable vol-
ume of pertinent literature [4, 8, 13, 19, 22, 23, 24].
However, most of success in this research has been in
the area of filament yarns.

Despite wide application of short fiber (staple) yarns,
the twist reinforcing or strength generating mechanism
as a fundamental structure assembling means for the
materials has not been clearly understood. There is no
general theory that can be used to explain_the me-
chanics of such structures [6, 21]. The problems in
understanding the structural mechanics of staple yarns
are primarily caused by two factors as indicated, for
example, by Goswami ef al. [5], that is, the disconti-
nuities in fiber length and the slippage of fibers during
yarn extension. Factors such as twist and fiber migra-
tion (i.e., variation in radial position in a yarn) in staple

v yarns acquire different dimensions, since they are the

only reasons why a bundle of short fibers is held to-
gether in a linear assembly. Moreover, in staple fiber
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yarns, the fiber-volume fraction is not only low, but
also variable, with the result that the structure has no
clearly defined surface. ‘

In addition, because of the changing structure of the
short fiber yarn at different twist levels, it is essential
to consider the yarn fiber-volume fraction, and con-
sequently all the mechanical properties of the yarn, to
be variables of yarn twist. This makes the analysis ex-
tremely difficult. ,

Another difficulty in developing a theory for short
fiber yarns relates to the statistical nature of the param-
eters involved. Irregularity and randomness of the
structural parameters of the short fiber yarns are their
inherent features [17]. In addition, in order to make
any progress in predicting the strength of staple yarns,
it is important to address the problem of the fracture
process and the load sharing mechanism between fibers
in a yarn. A thorough study of these issues will permit
us to establish the criterion of yarn failure and the
strength and fracture behavior of the yarn to be pre-
dicted.

As stated in reference 21, “because of the primary
function of twist and migration, it is in practice more
important to develop a satisfactory theoretical treat-
ment of the mechanics of short fiber yarns. This is
particularly desirable if progress is to be made in the
engineering design of short fiber yarns in order to make
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use of the increasing number of available fiber types,
the vast number of possible blends, and of new yarn
structures which might come from new methods of
spinning. If the basic mechanical analysis is solved, the
use of computer modeling techniques should enable
real practical progress to be made.”

There have been several attempts to establish more
fundamental theories for short fiber yarns such as the
work done by Hearle [10], Zurek [25], and Carnaby
[20] using various approaches based on the principle
of force-deformation analysis. The complexity of ap-
plying a mathematical treatment to staple yarn struc-
ture often prevents some of the theoretical models from
being useful practical tools for prediction. Also, there
have been studies to analyze short fiber yarns by means
of the energy approach [10, 20]. This method, however,
is unable to deal with the fiber slippage effect because
of the energy dissipation involved. The finite element
method has also been used to deal with the structure
[20]. This approach provides only numerical solutions.

Certainly, a subject of this sort can be approached
from several different directions and at various levels.
For example, we could gather very extensive data from
testing and manipulate them into a form with master
curves in terms of nondimensional variables like those
used in fluid turbulence analysis and fracture mechan-
ics. Even though such approaches can be useful and
convenient, the results are limited to the conditions
under which data are obtained. The method has no
power to predict behavior outside the range of labo-
ratory experience. Our goal in this study, therefore, is
to develop a relatively rigorous theory of the consti-
tutive equation for the staple yarn structure. A carefully
derived theory has as its basis certain assumptions or
hypotheses that give the boundaries of applicability of
the results. Within these boundaries, the theory has a
full and complete capability to model actual behavior.

This series of papers consists of several parts that
present a general theory of the mechanics of staple fiber
yarns. In Part I, we start with a short fiber yarn whose
twist level is so high that the interfiber slippage during
yarn extension can be ignored. We then propose a
theoretical analysis of the distributions of fiber tension
and the transverse stresses in a staple yarn, taking ac-
count of the effects of definite fiber length. Further-
more, we establish a constitutive relationship for the
whole yarn system through which material constants
such as yarn tensile and shear moduli as well as yarn
Poisson’s ratios are calculated based on fiber properties,
yarn twist level, and fiber-volume fraction. There are
some theoretical verifications of the results as well.

In Part II, we will deal with the problem of fiber
slippage during yarn extension. We will develop a
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modified constitutive relationship taking fiber slippage
into account. There will be a detailed parametric study
to examine the effects on yarn mechanical behavior of
fiber properties and yarn structural parameters.

In the later parts of this series, we will investigate
the effect of fiber path in a yarn by proposing several
different density functions for the statistical distribution
to describe fiber orientations. In addition, a fiber bend-
ing mechanism will be included in the analysis. Also
we will address the effect of fiber blending on yarn be-
havior and the problems related to the stochastic nature
of yarn fracture and strength due to structural irregu-

larities. The main approach of this series is the theo-

retical derivations, though experimental results previ-
ously available are used wherever possible to verify the
theoretical predictions.

Yarns as Transversely Isotropic Structures

Because staple fiber yarn is such a complex structure,
certain assumptions have to be made before any theo-
retical investigation can proceed. The yarn in this study
is the so-called idealized staple fiber yarn as defined by
Hearle [10]. We will adopt all the assumptions made
in reference 10 except that (a) the yarn fiber-volume
fraction (yarn packing density or specific volume) is
no longer assumed constant, but is allowed to change
along with the yarn twist level. (b) Uniformity of both
tension and the transverse forces on a fiber in a ten-
sioned yarn is not required. In fact, we will show that
both these forces vary along the fiber length due to the
definite fiber length (or the discontinuity of fiber length)
in the yarn. (c) Shear effects in a yarn are included.
Also, we will add one more assumption that was only
implied in reference 10: (d) The twist level of the yarn
is so high that the drafting force between fibers when
twist is zero [7] is negligible.

All real materials, when studied on a sufficiently
small scale, display a discrete molecular or atomic
structure. However, if one is concerned only with the
effects over distances appreciably greater than the dis-
tance between these microelements, one can replace
the discontinuous microscopic medium with a hypo-
thetical continuum. Naturally the same principle ap-
plies, as suggested by Carnaby [20], to fibrous struc-
tures. By considering the fibrous structure as a contin-
uum, one can then use the well documented and
powerful methods of continuum mechanics to deal
with the problems associated with the mechanical be-
havior of the yarn structure.

We first set a Cartesian coordinate system X;, X3,
X; in a staple yarn structure, where Xj lies along the
yarn axis, and let the angle between the X; axis and
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v the axis of an arbitrary fiber within the yarn be 6, and

that between the X; axis and the normal projection of
the fiber axis onto the X;.X, plane be ¢. Then the ori-
entation of any fiber can be defined uniquely by an
angle pair (0, ¢), provided 0 < f<rand0<¢p ==
as shown in Figure 1. _

One of the fundamental tasks in studying the me-
chanical behavior of a medium is to derive its stress-
strain or constitutive relationships. For media of dif-
ferent natures or types, these relationships are very dif-
ferent, as indicated by the theory of continuum me-
chanics. In the case of the ideal yarn model defined
above, the fibers can be assumed to ‘be arranged in the
transverse plane in such a manner that there is no pref-
erential packing geometry in the plane, thus making
the plane mechanically isotropic. The yarn structure
can then be treated as a transversely isotropic material
as indicated in reference 20. Consequently, its stress-
strain relationships can be expressed by the following
equation: ‘
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u where 1, 2, and 3 refer to the X;, X,, X; directions in

the Cartesian coordinate system, and E; is the longi-
tudinal modulus governing uniaxial loading in the
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FIGURE 1. The Cartesian coordinate system and a fiber in the yarn,

longitudinal (.X;) direction, ».7 is the associated Pois-
son’s ratio governing induced transverse strains, Er is
the transverse modulus governing uniaxial loading in
the transverse (X, or X;) direction, »7; is the associated
Poisson’s ratio governing induced longitudinal strains,
vrris the associated Poisson’s ratio governing resultant
strains in the remaining orthogonal transverse (X; or
X>) direction, Gr; is the longitudinal shear modulus
governing shear in the longitudinal direction, and G7r
is the transverse shear modulus governing shear in the
transverse plane. A comprehensive description of the
mechanical behavior of a staple yarn relies on the de-
termination of these material constants. .
Also, in the case of transverse isotropy, there are the
following interrelationships or restrictions on the range
of permitted values for these material constants [2]:

E;, Er,Gr, Grr>0 2)
G"‘2(1+un-) g )
v _vr |
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These restrictions will be used to verify the theoretical
results derived in this study. \

A staple yarn is made of short fibers twisted with

-varying orientations within the structure. Since it is

impractical to deal with fibers of different orientations
individually, a statistical approach, as used in references
15 and 16, is usually a better, or the only, alternative.
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To do this, a known form of the function to describe
fiber orientation probability density is required.

Let the probability of finding the orientation of a
fiber in the infinitesimal range of angles 6 ~ 6 + db
and ¢ ~ ¢ + do be (6, ¢) sin 8d0d ¢, where (0, ¢)
is the still unknown density function of fiber orientation
and sin @ is the Jacobian of the vector of the direction

_cosines corresponding to 6 and ¢. The following nor-
malization condition must be satisfied:

fdof'd¢n(o,¢)sino=1 , ™
(1 R 0 .

where g is thé upper limit bf the polar angle 9.

Stresses on an Arbitrary Fiber
in a Short Fiber Yarn

Because of the inherent fiber length discontinuities
in a staple yarn, when the yarn is under tension, the
resulting tensile stress on each individual fiber cannot
be a constant along its length, as assumed in the con-
tinuous filament yarn case. As described qualitatively
by Hearle [10], the stress will be zero at both ends of
a fiber, because no force can be applied to the tips of
the fiber. It will then rise gradually to the maximum
value determined by the yarn extension due to the
transverse forces generated in the yarn, which grips the
fiber through the neighboring fibers by means of the
frictional interactions. A theoretical description of the
distribution of fiber stresses is thus desirable in order
to reveal the effect of these length discontinuities and
to deal with the problem of fiber end slippage during
yarn tensioning. This section focuses on determining
both tensile and transverse stresses on an arbitrary fiber
within the yarn. '

TENSILE STRESS DISTRIBUTION

Based on the similarity of the stress transfer mech-
anism between the two structures, a staple yarn can be
considered analogous to a short fiber composite; a fiber
can be viewed as embedded in a matrix made of the
neighboring fibers (see Figure 2), except that this fiber

the cross section

[ )
- %

FIGURE 2. A fiber embedded in the matrix
made of adjacent fibers in a yarn.
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adheres to the matrix by means of frictional force rather
than chemical bonding as in a composite. To begin
with, let us assume that the twist level of the yarn is so
high that there is no slippage between fibers during
yarn extension.

Assume that the yarn consists of short fibers, each
of constant length /rand of a circular cross section of
radius r,. Also suppose the yarn as a whole is subject
to a strain ,, which will cause a strain ¢/in an arbitrary
fiber. Let x and y locate at and represent the fiber axial
direction and the yarn axial direction. If C,, is the axial
load in the fiber at a distance x from the fiber center,
then similar to the treatment of Cox [3], we have

dC,px
dx

where u,is the longitudinal displacement in the fiber
and v, is the component in the fiber direction of the
corresponding displacement the yarn would undergo
at the same point if the fiber were absent. H is a con-
stant, the value of which depends on the geometrical
arrangement of the fibers and the yarn mechanical
properties. Also '

= H(ur—v)) , (8)

du
Cox = Er4y '&;f >

OR )

where Eyand A, represent the tensile modulus and the
cross-sectional area of the fiber. Differentiating Equa-
tion 8 and substituting 9, we get

d*C,, . fdw dv)\ _ [ Cp _dby
dx? _H(dx dx)—H(EfAf dx) - (10
dv, . .
Now —= is, in fact, the component of the yarn strain

dx
in the direction of the fiber axis, or in other words, the
fiber strain ¢ caused by the yarn strain ¢, i.e.,

(11)

The value of ¢is to be determined based on the fiber
path in the yarn. Inserting this relation into Equation
10 yields

d*C,

dxz (12)

= Cox

- H( Es4y ef)
The solution of this differential equation has been given
[3]as :

Cox

qr=-2;d=£bq[l—-g§Eiﬂiiﬂi

cosh (ns)

] , (13)
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| where

/2
2s EfAf
is a factor dependent on H and

(14)

-
2, (15)
is the so-called fiber aspect ratio. .

Equation 13 gives the fiber tensile stress distributio
in terms of fiber properties, yarn properties, and fiber
strain, provided we can determine the constant . In
fact, n or H can be derived using a treatment similar
to the one Cox proposed [3].

Let us consider again the arbitrary fiber within the
yarn and the surrounding circumferential layer of the
matrix made of adjacent fibers as shown in Figure 2.
Assume all fibers are arranged in the yarn regularly
without folds or kinks, so the distance between the
center of this fiber and the centers of other fibers in
the layer is 2r,. If 7(r) is the shear stress in the direction
of the fiber axis on planes parallel to this axis, where r
is the radial position in the yarn, then at the surface of
the fiber r = r;, we have

A _ —2xrer(rg) = H(ur—v,) . (16)
dx
Therefore,
H=-2ur (17)
(ur— vy) ‘

Now let w be the actual displacement in the yarn
close to the fiber and assume that there is no slippage
between the fiber and the matrix. Then at the surface
of the fiber, we have w = u,, and at a distance from
the fiber axis equal to 2ry, w = v,. If we consider the
moment equilibrium of the portion between rrand 2r,
we have

2xr7(r) = constant = 2xry7(ry) , (18)

and so the shear strain in the yarn is given by

7;—.6:_ rGr, (19)

where Gy is the mean longitudinal shear modulus of
the yarn whose value or expression is to be determined.
Here we have assumed an elastic shear behavior of the
yarn.

_ Integrating from rto 2ryand noting that the mean
shear modulus Gy, is independent of the radial position
within the yarn, we have

753

27/
Aw = ! dw = ey In (2r4/ry)
GTL

r

Dy, (20)
GrL
As Aw = (v, — 1), using Equations 17 and 20 yields
_ ZWGTL
2 @1

Then we get the expression for n as
G 2%

b/ H L
2s EfAf 2s Ef Af1n2
-/ 2
) Ef In2 ° (22)

In fact, n is an indicator of the gripping effect of the
yarn structure on each individual fiber. We therefore
name it the cohesion factor, which is obviously a very
important system property, and depends on the ratio
of yarn shear modulus Gr; and fiber tensile modulus
E;as well as the fiber arrangement within the yarn re-
flected in the analysis above.

DISTRIBUTION OF TRANSVERSE STRESS

Shear stress 7(r), on the other hand, actsin the form
of a frictional stress and is related to the transverse
pressure g, by

(r) = pg, . (23)

For simplicity, we have adopted Amonton’s friction
law here, although it could, of course, be replaced by
more sophisticated theories, This frictional stress is the
sole cause of stress transference between the yarn and
its constituent fibers. Because

r f2¢rf= =2xreug, (24)
we therefore have
__Irdoy_n . sinh(nx/r)
" 2u dx  2u 7Y cosh (ns) (25)

This gives the distribution of the transverse stress on
the fiber.

The equations above show that the stresses along the
fiber length are by no means constant, due to the lim-
ited fiber length. Instead, fiber tension is zero at the
fiber ends and then ascends toward the fiber center.
Also, the transverse stress varies accordingly because
of the interrelations between the two. In other words,
the stress fields within the staple yarn are not contin-
uous, owing to the discontinuity of the fiber length.
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In this analysis, the effect of stress transfer across
the fiber ends is neglected, which will cause an extra
load on both the fiber and the fiber matrix in this region.
However, this effect is considered insignificant [18] as
long as the fiber aspect ratio s > 10. Also, the influence
of stress concentration across the fiber ends, which will
lead to greater shear stress [12] and will affect the slip
behavior of the fiber ends, is ignored.

AVERAGE STRESS ON AN ARBITRARY FIBER

The average tensile stress over the definite fiber
length can be calculated from Equation 13 by inte-
grating over the fiber length to give

L. tanh (ns
o= Efe/[l - —n%—z] = Erme , (26)
where
tanh (ns)
=] — ———— 7
m=1 o (27)

is called the length efficiency factor. When fiber length
ors—> oo, theny = 1.

MAXIMUM VALUES AND RATIO OF TENSILE AND
SHEAR STRESSES

Note from Equation 13 that oy = 0 at both ends
where x = /2. The maximum stress occurs at the
center position x = 0, and then

i
=F - 28

Tmax fef[l cosh (ns)] (28)

The maximum value of g, occurs at the fiber ends, ie.,
x =12, ‘

man = — Ejetanh (n5) (29)

2u

and g, is zero at the middle of the fiber.

The ratio of the maximum value of shear stress to
the maximum tensile stress in the fiber is

Bmax _ M oth (ns/2) (30)
2p

Omax
This ratio is important because it is a reflection of the
intrinsic properties of the fibers and the yarn, and is
independent of yarn strain.

The preceding equations provide distributions of all
internal stresses along a fiber length. Specific examples
and illustrations will be given in the discussion section
of this paper. If the fiber-yarn strain relationship is
known, these equations also predict the stress distri-
bution radially across the yarn.
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Determining Fiber-Volume Fraction

It is well known that the yarn fiber-volume fraction
Vyis a key parameter that will affect all the other yarn
properties. It is also true that the yarn fiber-volume
fraction is not uniform throughout a yarn cross section.
Therefore, in this study, we have used the mean fiber-
volume fraction Vyaveraged over the whole yarn cross
section. But even this mean fiber-volume fraction, for
a given fiber amount, depends on yarn extension and
twist level. An iterative expression for the fiber-volume
fraction in terms of the yarn extension will be provided
in another paper in this series. The establishment of
an analytical expression for V7, which includes the effect
of yarn twist level, is an important task in this study.

It is possible to develop a very rigorous expression
to specify such a relationship based on geometric and
mechanical analysis. Some of our early attempts, how-
ever, showed that such an expression is most likely to
be very complex and impractical. Instead, we have used
a partially empirical approach here to provide a much
simpler and still quite reasonable result.

The relationship between V and the yarn twist level
T, has been studied experimentally [9], and the result
implies the following relationship:

a;

=A- B,
dT, BYy

(31
where A and B are constants. That is, the change rate
of V;versus the yarn twist factor T, possesses a max-
imum when Vyis at its lowest value Vo, decreases as
Vris increasing, and becomes zero when Vyreaches its
highest level V.

The solution for this equation is

Vy= Vin = Vine "5 + Vyoe ™ . (32)

By properly choosing a factor m, Vyo can always be
expressed in terms of Vi, i.e., ‘

VfO = mem
So finally we have

V= Vi1 = (1 = me™5T) (34)

From the experimental evidence [9], we find V5, = 0.7,
Vso = 0.154, and B = 0.195. The equation above be-
comes ,

V;=0.7(1 — 0.78¢7%'%%) . (35)

Figure 3 shows the result using this equation. In this
study, we will use this equation to calculate other pa-
rameters. Obviously all its factors can be modified to
suit other particular yarns.

(33)
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FIGURE 3. The assumed result of the fiber-volume
fraction ¥ versus yarn twist T,.

Loads and Deformations on an Arbitrary
Fiber Within the Yarn

The load applied to the yarn must be transferred to
each individual fiber through fiber contacts by means
of the friction mechanism. Therefore, the forces on
each fiber are most likely distributed in a discrete fash-
ion along its length. For simplicity, however, in our
analysis we will replace it by a concentrated load av-
eraged over all the distributed loads on a fiber. Also,
we will take the whole fiber as the unit for deformation
analysis, as we did in the preceding section dealing with
fiber stress distribution. Let us name the concentrated
load on each fiber C; and assume that it is acted on
both ends of the fiber in the direction j as a result of
the external load P; on the yarn. This load C; can be
further resolved into components C;, acting in the axial
direction of the fiber and C;, normal to the fiber axis,
as shown in Figure 4.

€3

Sip

Cip
¢4
c3

FIGURE 4. The forces and their components on a fiber.
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The component C), will cause axial elongation on
the fiber, while the component C;, will result in bending
deformation. The bending problem in a general fibrous
assembly has been analyzed by Lee and Lee [15], and
their results can be helpful to cases where the bending
effect is important. Since fiber tensile breakage is the
dominate form of fiber failure in a yarn, the bending
effect is therefore considered less significant. Mean-
while, including bending deformation in the analysis
will greatly increase the complexity of the final results.
Therefore, to start with, we will focus only on axial
deformation. ‘ ,

According to Lee’s analysis [14], the expressions of
the projections of Cj, (j = 1, 2, 3) onto the Cartesian
coordinate system in terms of the fiber orientation are

Cyp,=C;sinéd cos ¢(sin 8 cos ¢7.

+sin Osin g1, +cosb73) , (36)
C,p = C; sin 0 sin ¢(sin § cos ¢7l

+sin fsin ¢1, + cos673) , (37)
Cyp=Cs cos 6(sin 0 cos ¢7,

+sin Osin ¢i, +cosfis) . (38)

The axial deformation §,; on the fiber caused by Cj,
can be found using Equation 26. Since we have

O = lreg= lr—— 39
W= b=, (39)
and
- _Gp
on 4, (40)
combining the two gives
Cpl,
by = 2L 41
Y AsErm (41

Note that the load and hence the deformation have
three components, as indicated in Equations 36-38.
For the same external load, their values will be different
for fibers with different orientations # and ¢.

Deformations, Strains, and Stresses of a '
Representative Yarn Element

In the preceding sections, we have derived all the
stresses, loads, and deformations for an arbitrary fiber.
By using a proper approach, we will be able to extend
our analysis from a single fiber to the whole yarn so as
to study yarn behavior.

Figures 2 and 5 show the arbitrary fiber with its sur-
rounding matrix made of neighboring fibers. Since this
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portion is taken arbitrarily from the yarn, it is consid-
ered a representative element of the yarn. The dimen-
sions of this yarn element can be defined as follows:
First, the projected lengths of the arbitrary fiber onto

the three coordinate axes are
[n=Isinfcos¢ , (42)
Ay =lsinfsing , (43)
and
I3 =1lcos 8 (44)

The statistical average dimensions of this yarn element
can then be determined by integrating these projections
of the arbitrary fiber, using the density distribution
function, over all the possible fiber orientation ranges
as

I,=lK . (45)

where the orientational factors K; were derived by Lee
and Lee [15]:

K,=L'd0J:d¢sinzacos¢Q(0,¢) , (46)
K2=J:d0J:d¢sin20sin¢ﬂ(0,¢) , (47

K; = J: dab J: d¢ sin 6 cos 09(0, ¢)

(48)

— T x1
m |
i
/‘“*s\\ =
fﬁ l\‘ss \l’
\\‘J

FIGURE 5. A representative clement of the yarn
and its projected dimensions.

Similarly, the statistical averages of the deformations
of this yarn element can also be derived based on the
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fiber deformations as-

b= [ [ dosunie, 6)=3ap . (49)
where

= _ Gk
[ LEm (50)
is the magnitude of the axial deformations of the yarn
element, and M ® are the respective coefficients rep-
resenting the effects of fiber orientation and loading
direction. '

Mj;® can be calculated based on Equations 36-38,
41, and 49 as '

M,,4=J:da_l:d¢sin’ﬂcosz¢9(0, ) .

My = M3°
= fo ds J; d¢ sin® 0 cos 0 sin $0(0, ) . (56)

In order to determine the strains and stresses on this
yarn representative element, we need to know the ex-
ternal load on the element. Because of the axial sym-
metry of the yarn structure, it is reasonable to assume
that all the loads C; exerted on individual fibers have
the same magnitude in the identical direction of the
external load P;. Therefore, we have

Cj=_ﬂ_'=_P.!AJ_ ,
N; KV,

where A, is the projected area of the yarn element in
direction j and

(57

_KVy
i Af
is the projected number of fibers in the same direction.

(58)

(51)

My = J:da J: d¢ sin® 0 sin? o6, ¢) , (52)

M;3¢ = fo'defo' de cos? 0 sin 09(0, ¢) ,  (53)
M),* = My*° .

=J:doJ:d¢sin30cos¢sin¢ﬂ(0,¢) , (54)
M)® = M;,*° |

=J: de J: d¢ sin? 8 cos 6 cos o8, 9) , (55)

v
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So the external load can be expressed as

K;VA,;
P =CN; = if‘ﬁ!l (59)
, o]
The normal stress on the yarn element due to P; can
thus be defined as

P, KV:C:
oy=—L = i Al A
Ay 4
As in the shear case, we assume that there are two
surface tractions P; and P, applied as shown in Figure
6 onto the yarn element. Similar to P;, P can be written
as ~ .

(60)

K
P = SeKebiAn (61)
Ar
For shear force equilibrium, there has to be _
Pk = Pj (62)

Therefore we have
CkKkAyk = C}K}ij e (63)

For simplicity, without losing generality, we can always
select the yarn element in such a way that

Ay = Ay (64)
So we get the relationship
. GKi=CK; ~ (65)
The shear stress is then defined as
¥ /A S

The strains of this yarn element are derived based on
its deformations. The value 3; shown in Equation 49
is actually the overall deformation of the yarn element
in the direction k due to the external load P;. Therefore
the normal strain of the element can be defined as

3y EL ‘
e.. = = N
| Ul UK
and the shear strain of such a system can be defined
according to Pan and Carnaby [16] as

(67)

3ﬁ+3,q-+3kk+3,-k

= 68
'ij Ij-k Zj-', ( )

FIGURE 6. The surface tractions on the yarn element.
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Determining Yarn Material Constants
Since the yarn element is an arbitrary part or the
representative of the yarn, the yarn thus experiences .
the same stresses and strains as defined in the last sec-
tion. Consequently, we can calculate the elastic moduli
of the yarn as

E,,=1Zj- (J=1,2and3) , (69)

and its Poisson’s ratios as

SRS /S ]
’ o & Sl
I

(j#kandj, k=1,2,3) , (70)
as well as the shear moduli,

Gi="% (j,k=1,2and3) (71)

If we bring the expressions of ¢; and ¢; and the result
in Equation 49 into Equation 69 and use the symbols.
defined in Equation 1 for a transversely isotropic ma-
terial, with necessary algebraic manipulations the ten-

sile moduli of the yarn become .
_ o _ VEmK:?
EL =Ej3; My (72)
and
V,ErmKr* o
Er=En=E =050 . (1)
T
and the Poisson’s»ratio‘s become
MK ‘
VrL = Vi3 = v3 = M::“KZ ’ (74)
M; 4K
VIT= V31 = v = MZ"K: ’ (75)
‘ - M°K, M5, 4K,
VT = = vy = = A2 (76)

M°K; MK,

Note that in Equation 76 the subscripts 1 and 2 are
used instead of two 75, because Myr® + M;,° or
M,,°. Since for a transversely isotropic material, K,
= K, = Kr, this equation further reduces to

_ M M,°
T Mt M

The shear modulus

(77)
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Gr=Gu=Go=girigy +
where Sl f

_ (Mpr® + M) Mr® Mis°
ST =t v )

For the same reé’son;»we dlstmgmsh between directions
1 and 2 in the following equgtio’n: , :

‘ EV,
Gn=G‘nz=’,Gzl=§(f‘1—:;I'):, (80)
where . ' , e
) a a
s(1,2) = 2 My *;M") (81)
~ - kr

Theoretical Verification of Results

One way to verify these theortically derived results
is to check the restrictions given in Equations 2 to 6.
First of all, since the orientational factors such as
M;# and K; always possess positive values, it is obvious
that

EL’ ET: GTL,'GTV'T > 0
Equation 3 requlres that
Grr 2(1 + »rr)
It is easy to show, based on the definitions of Er and

Grr, that
Er _ 2(Mp® + M%) My
Gor M 2 Mor (82)
According to Equation 77,
Mp® _
M

The condition in Equation 3 is thus satisfied.
The next restraint states that

vrr _ VLT

Er EL

This can easily be proved to be true using Equations
72-76, noting that M7.“ = M 7°. As to the restraints

E,\!/2
vl = (E‘f)

and
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EL 1/2
|verl =< ( ET) s

the specific form of the fiber orientation function is
needed in order to evaluate these two conditions.

Yarn Density Function and
Fiber Orientation

So far we have derived all the material constants

_ that govern the mechanical behavior of the staple yarns.

The only thing remaining to be found is the expression
for the distribution density function, which describes
the directional orientations of fibers within the yarn.
In fact, a successful treatment of fiber orientation and,
later on, fiber migration effects relies largely on a sat-
isfactory density function. Unfortunately, determining
the density function for a particular case is not always
ecasy. Let us start with the simplest case here, and the
more complex ones will be treated in later papers of
this series.

For an axially symmetric structure like a yarn, itis
easy to see that the azimuthal angle ¢ is uniformly
distributed in the range 0 < ¢ < 7, 50 that the density
function is independent of ¢. Moreover, note that the
polar angle 8 is identical to the helix angle of a fiber in
the yam,and 0 <0 <gq, where ¢ is the helix angle of
fibers on the yarn surface. The simplest case is to as-
sume that all fibers in a yarn are oriented in a totally
random manner within the range g. Because of this
randomness of fiber orientation, the density function
becomes independent of 0 as well. Therefore this den-
sity function has the form of

0, ¢)sin 6 = Qsinb , (83)
where Q is a constant whose value is determined using
the normalization condition in Equation 7 as

o (84)

=1r(l —cos q)

Using this density function, all the related parameters
can be calculated as

=(l+cosq)
L 2 3
2(g/2 — 1/4sin 2q)
KT=
(1 — cos q)
Iy a=(2/3—cosq+l/3cos3q)
™ 2(1 — cos q) ’
2/3 — cos ¢ + 1/3 cos?
M,2“=M2,“=(/ s g+ 1/3 cos” g)

x(1 — cos q) ’
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_1+cosg+cosiq

3 2
2sindgq

3x(1 — cos q)

My

MLTa = MTLa =

Bringing thése resuits into the relevant equations
yields the final results for the longitudinal tensile mod-
ulus :

= 3V/’Efﬂ[ (l + cos q)2
E 4 1+cosqg+cosiq ’ (85)
the transverse modulus
ET=,8V€fnl |
L)
(g/2 — 1/4 sin 2q)?
3 3 , - (86)
(¥ — cos ¢+ 1/3 cos® g)(1 — cos q)
the Poisson’s ratios
o sin® ¢
= , (87
LT = 3(1 — cos® q)(q/2 — 1/4 sin 29) (87)
- 16 sin g(g/2 — 1/4 sin 2q) (88)
TL = 32%(2/3 — cos g+ 1/3cos®q) °’
r=2 (89)
w
as well as the shear moduli
Gorr = 4VfEfm
T 22 +7)
2 — 1/4 sin 2q)?
(q/ / q) (90)

(2/3 —cos g + 1/3 cos® g)(1 — cos q)
Gy is the same as given in Equation 78 with
#(1 — cos g) sin ¢
6(g/2 — 1/4 sin 2q)?
8singq
3x(1 — cos g)(1 + cos q)

S(T,L)=

#(4 — 3 cos g — cos® q)
6(q/2 — 1/4 sin 2¢)(1 + cos q)

(91)

Calculations and Discussion

The data used for the calculations are listed in Table
I. The yarn surface helix angle g is calculated using an
equation from Hearle ez al. [10]. Since they developed
this equation based on a continuous filament yarn,
which has a more regular structure than a staple yarn,
we insert a correction factor a, into the equation:
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- 3 (40x )]
g = arctan [a,,lO T, (Pfo)] .
In this study, we used a, = 2.5. Because of the correc-
tion factor, the upper limit of ¢ will also be slightly
higher than what Hearle ef al. defined for continuous
filament yarns [10]. Figure 7 shows the ¢ values cor-
responding to an increasing yarn twist factor T',,. ‘

(92)

TABLE 1. The fiber matrix properties used for calculation.

Item " Typical value Unit
Fiber radius 7 3%107 . em
Fiber length /; 3.0 em
Fiber specific density p, 1.31 g/cm?
Fiber modulus E; 6 % 107 g/om?
Fiber frictional coefficient 0.3
Fiber aspect ratio s = s 500
‘ 2r, .
q
(degree)
70
60
50
40
30
20
10
20 40 60 80 100 120

FIGURE 7. The yain surface helix angle g versus yarn twist T,.

Since the longitudinal shear modulus G, in Equa-
tion 78 depends on the cohesion factor n, and the latter
is in turn determined by the modulus G+, as shown
in Equation 22, we used a numerical approach to solve
G from Equations 78 and 91. We then calculated n
and plotted it against the yarn twist factor as shown in
Figure 8. By considering the physical meaning of n,
we can see from Figure 8 that the gripping force be-
tween fibers increases very rapidly with increased yarn
twist level, and levels off when twist becomes very high.
Note that when we derived 7 in Equation 22, we as-

sumed that all fibers are packed regularly as shown in
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Figure 2. So by applying the corresponding relation-
ships into the integration in Equation 20, it is possible
to study the effects on fiber gripping force of irregular-
ities in fiber arrangement such as kinks and reversals.

04

yarn cohesion factor

024

Ty

0.0 T T T T
0 30 80 90 120 150

FIGURE 8. The yarn cohesion factor # versus yarn twist T,

Also, because all yarn properties are determined by
the cohesion factor n or the yarn twist factor T, in
the following discussion, we will mainly study the re-
lationships between T, and these yarn properties. Other
factors such as fiber properties and orientation, together
with the effects of end slippage during yarn extension,
will be discussed in subsequent papers.

The shear stress on a fiber in a tensioned yarn is
provided in Equations 23 and 25, which clearly give
the connection between fiber properties, the yarn
cohesion factor, and this stress. For convenience of
discussion, we define a dimensionless relative quantity

T= -g—:) . Figure 9 shows the results at three different
/A
twist levels. .

First of all, the distribution of shear stress along a
fiber is not constant; it possesses the maximum value
at fiber ends, decreases towards the fiber center, and
reaches zero at the fiber center. As expected, twist has
a profound effect on the shape of the distribution: at
a relatively higher twist level, the magnitude of the
maximum shear stress at fiber ends not only becomes
much greater, it also descends more rapidly to zero
within a shorter distance from the fiber ends.

Similarly the relative tensile stress on this arbitrary

fiber is ¢ = —L . As shown by Equation 13, so long
Eres :
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Relative shear stress
Ty=16
0,025
0.02
0.015
0.0t R
Ty=6
- ‘% Fiber Length

0.5 1 15 (em

FIGURE 9. The relative shear stress 7 on a fiber.

as fibers are not completely slipping, at the region where
they are gripped, the distribution of fiber tension is not
linear but follows a hyperbolic rule.

The result is given in Figure 10. When the yarn twist
level is above a certain value, the fiber tension will
build up very quickly from zero at the fiber ends, and
reach the value determined by the yarn extension at

Relative tensile stress

1
1Y

f \Ty=16

" FiberLength

15 1 15 o

FIGURE 10, The relative tensile stress o on a fiber.

v
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the middle of the fiber length. However if the twist
factor is small, the tension on a fiber will be lower than
the value associated with the given yarn extension (at
the fiber center, the relative value is less than 1).

Figure 11 gives the ratio of the maximum values of
fiber lateral pressure and tensile stress based on Equa-
tion 30. This ratio increases as the twist increases, in-
dicating that the maximum value of lateral pressure
increases faster than the tension. This ratio-can also
exceed 1 at extremely high twist.

12

0.84
0.8+

0.4

- ratio of maximum stresses

0.2+

0.0 =% T—r—r—r—r—T —r—r—

T Ty
0 30 60 90 120 150

FIGURE 11. Ratio of maximum values of pressure
&Smax A0d tensile SITESS oy,

To study the effect of definite fiber length, we provide
in Figure 12 the relation of the so-called fiber length
efficiency factor 7,and T,. From Equations 26 and 27,
we can see that
a5 tanh (ns)

Eféf I ns
That is, this length efficiency factor actually represents
the relative average tensile stress on a fiber. Its value
is far less than unity when the yarn twist is below a
certain level. In other words, a staple yarn becomes
equivalent to a filament yarn in terms of the fiber con-
tribution to yarn strength once the twist level gets high
enough. Note that 5, is the only factor that reflects the
effect of fiber dimensions (by means of the fiber aspect
ratio s).

The following figures provide the results of the pre-
dicted yarn properties. As indicated in the last section,

m= (93)

all yarn moduli are proportional to the fiber tensile -

modulus E;. Consequently, the figures of yarn moduli
are plotted in terms of the relative scale using the ratio
of yarn moduli and E;.
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0.8

fiber length efficiency factor

0.0 T T

T Ty
) 30 (-] 90 120 150

FIGURE 12. The length efficiency factor n; versus yarn twist T,

Figure 13 shows the result for the longitudinal tensile
modulus of the yarn. It is well known that a staple yarn
modulus increases as the yarn twist level goes up from
zero to a certain point; it then decreases along with the
further increase of T',. This is still the case even for
our hypothetical yarn model where fiber end slippage
has been excluded. The curve shown in Figure 13 is in
fact the result of three competing factors—the yarn
fiber-volume fraction ¥V, the length efficiency factor
7, both of which increase monotonically along with
yarn twist level, and the effect of fiber obliquity caused
by twist, which reduces the yarn modulus. The effect
of this fiber obliquity is also depicted separately in Fig-
ure 14.

0.70

0.60 4

0.55

longitudinal tensile modulus

0.50 y Y T Y Y
0 30 (1] 90 120 150 Ty

RIGURE 13. Relative yarn longitudinal tensile
modulus E,/ Eyversus yarn twist T,
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-1.02

1.00

4
2
1

fiber obliquity effect
o o
: 8

°
8
L

0.90 v LBE g L] AR § i e 4 v Ty
0 30 60 80 120 150

FIGURE 14. The effect of fiber obliquity versus yarn twist 7.

We must admit that the fiber obliquity effect depicted
in Figures 13 and 14 is not as significant as expected.
The cause for this lies in the form of the fiber orien-
tation density function used in the analysis, which
specifies the fiber path in a yarn. Derivation of a more
satisfactory density function will be the task in our
subsequent paper, which will focus on the investigation
of fiber orientation, including migration, in the yarn.

The result for the transverse tensile modulus of the
yarn Eris given in Figure 15. It indicates that initially
Erincreases very rapidly as yarn twist goes up. It be-
comes stable once yarn twist is above a certain level.

0.5

0.4+

0.3 4

02~

transverse tensile modulus

0.1+

0.0 T T ™ T — Ty
] 30 80 g0 120 150 ’

FIGURE 15. Relative yarn transverse tensile
modulus Ey/ E, versus yarn twist: T,

The relationships of both the longitudinal and
transverse shear moduli of the yarn against the twist
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are shown in Figure 16. Both of them ascend mono-
tonically but at significantly different rates with yarn
twist. The whole structure thus grows tighter, making
it more difficult for fibers to move relative to-each other
when more twist is inserted into the yarn. Both moduli
approach the same level at the high twist region.

0.20

ITT R s s
=
2
E 010
T
H
o
=
L]
0,05 - e GTL,
' + ‘;T.r
0.00 L — NSNS—
0 30 80 90 120 150 1Y

FIGURE 16. Relative yarn shear moduli Gr./ E;
and Grr/ Eyversus twist T,

It is interesting to see how the yarn Poisson’s ratios
change with twist level. When twist goes up, and yarn
structure grows tighter, the Poisson’s ratio v.r, gov-
erning induced transverse strains-of the yarn due to
longitudinal strain, decreases (see Figure 17), indicat-
ing that the effect of longitudinal strain on the trans-

yarn Poisson's ratios

0.6 L) L - T T
0 30 (-1 90 120

FIGURE 17. Poisson’s ratios of yarn versus yarn twist T,. =

Ty . ‘
150
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verse deformation becomes smaller. The Poisson’s ratio
v, governing induced longitudinal strains of the yarn
due to transverse strain, shows a similar trend, meaning
that transverse strain will also have a decreasing effect
on longitudinal deformation of the yarn. The Poisson’s
ratio vrr, on the other hand, remains constant, showing
that the interaction between the transverse strains is
independent of the tightness of the structure.

Another point worth mentioning is that the values
of these properties may appear too high. Note that a
transversely isotropic material is different from an iso-
tropic one whose Poisson’s ratio is always less than 0.5.
Jones [11] has reported v, = 1.97 for a boron-epoxy
composite. In fact, the only restrictions on the per-
missible values of »; and »7; are dictated in Equations
5 and 6, whereas the boundary of v for a transversely
isotropic material [2] is |vsr| < L.

‘We have to stress, however, that the theory presented
here does not consider fiber slippage, which will have
a significant effect on yarn properties when yarn twist
level is low. Therefore, the yarn mechanical behavior
at the low twist levels shown above has to be modified.
A modified theory including the fiber slippage effect
will be introduced in the second part of this series.

Also, it is now possible to verify the constitutive re-
straints in Equations 5 and 6 on the tensile moduli and
Poisson’s ratios. The results are illustrated in Figures
18 and 19, showing clearly that both conditions are
satisfied. This again confirms the validity of the analysis
in this study.

1.4

1.24
. EL/ET
1.0 . 2
VLT
0.8 4
0.6 T T T T T T T Ty
0 30 60 90 120 150
. . . . . 2 EL
FIGURE 18. Verification of the constitutive restraint v1r < B
T

Conclusions

We have developed a constitutive relationship for
short fiber yarns without considering the effect of fiber
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09

0.7 4

06+ + Ep/EL
+ 2
VTL
o.s-n\mw
0.4 4+ e A A M +—r Ty
1] 30 [:14] 80 120 150

FIGURE 19. Verification of the constitutive restraint v}r < 751 .
L

end slippage. We have shown theoretically that, in gen-
eral, both fiber tension and lateral pressure are not
constant along a fiber length during yarn extension.
The effectiveness of fiber gripping due. to the frictional
mechanism induced by yarn twist can be represented
by the yarn cohesion factor defined in this study, which
depends on yarn twist, fiber tensile modulus, and the
form of fiber arrangement in the yarn.

Among the yarn mechanical properties derived in
this study, the tensile and shear moduli are proportional
to the fiber tensile modulus Ey, with the proportionality
constants consisting of three parts, one being the fiber-
volume fraction ¥V, the second the length efficiency
factor #; in which the fiber dimensions are included,
and the third reflecting the effect of fiber obliquity or
fiber orientation distribution in the yarn. Twist alters
the values of the yarn moduli through these factors.
On the other hand, the yarn Poisson’s ratios are related
only to the fiber. gecometrical orientation within the
yarn, and are independent of the fiber’s intrinsic prop-
erties, if we ignore the effects of the fiber Poisson’s ratios
themselves.
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Appendix
NOMENCLATURE ‘
X, X; and X3 Cartesian coordinates
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# and ¢

q

06, ¢)

lrand Ly = I;/2
4

Erand 1/
urand py

Sjk and qu

€ and o

Yk and 7 ik

polar and the azimuthal angles of a
fiber in a yarn

fiber helix angle at the yarn surface

fiber orientation density function in
the yarn

fiber length and half-fiber length as
used in the theoretical analysis

cross-sectional area. of fibers

fiber tensile modulus and radius

interfiber frictional coefficient and fi-
ber specific density

fiber-volume fraction (the speclﬁc
volume) of the yarn

cross-sectional area of a yarn element
in directionj

external load in direction j exerted
on the yarn

external load in direction j exerted
on an arbitrary fiber in the yarn

tangential and the normal compo-
nents of C;

cohesion factor reflecting the fiber
gripping effectiveness of the yarn

fiber length efficiency factor reflecting

the effect of finite fiber length

geometrical coefficient when an ori-
ented fiber length /-is projected to
direction j

geometrical coefficients associated

with the components of axial de-
formation caused by P; in direc-
tion k

axial elongation of an arbitrary fiber
in the yarn due to P,

statistical mean deformation com-
ponents in direction k due to P;
and the mean deformation com-
ponent due to axial elongation of
the yarn representative element

continuum tensile strain and stress
of the yarn in direction j

continuum shear strain and stress of
the yarn in direction j due to
load Py

tensile elastic modulus of the yarn in
direction j

shear modulus of the yarn corre-
sponding to shear stress 7

Poisson’s ratio of the yarn

transverse modulus governing uni-
axial loading in the transverse (X,
or X,) direction of the yarn

EL

GTL

vrr

vyrL

VLT

10.
11.

12.
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longitudinal modulus governing .
uniaxial loading in the longitudi-
nal (X3) direction ..

.longitudinal shear modulus govern-
.ing shear in the longitudinal direc-
tion ’

transverse shear modulus governing
shear in the transverse plane

associated Poisson’s ratio governing -
resultant strains in the remaining -
orthogonal transverse (X; or X;)
direction of the yarn

associated Poisson’s ratio governmg'
induced longitudinal strains of the
yarn

associated Poisson’s ratio governing
induced transverse strains of the
yarn
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