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ABSTRACT

The initial response of the unit fibrous cell to an externally applied shear stress is
assumed to involve both the bending of fiber sections and slippage at contact points.
The criterion used to determine whether a contacting fiber will bend the contacted
fiber section or whether it will slip along it depends on the relative angles of the two
fiber sections to the external stresses. The total proportion of slipping and nonslipping
contact points is thus derived using the density function of fiber orientations within
the unit fibrous cell. The derived modulus values for shear behavior are related to the
moduli derived earlier for compression behavior. The symmetry rules for selected
idealized orientation distributions (e.g., random ) of the fibers in the unit cell provide

a check on the validity of the derivations.

The use of continuum mechanics to model the be-
havior of assemblies of fibers remains restricted by in-
adequate knowledge of the constitutive properties of
the unit fibrous cell. In the last three years since we
first raised this issue [4], a number of papers have ap-
peared that have improved our understanding of how
the unit cell responds in tension [2] and compression
(3, 8]. This understanding includes a prediction [3, 8]
of the various Poisson’s ratio terms so that algorithms
are now available for estimating many of the tangent
compliance terms in the general material properties
matrix.

While these recent analyses of tension and compres-
sion have been able to draw on a long established legacy
of published research dating back at least to the theories
of Grosberg [5] and van Wyk [11], respectively, the
same does not apply to shear behavior. Indeed while
it has long been recognized that shear between layers
of fibers in yarns [ 1] or fabrics [ 5] does occur, the theo-
retical treatment of shear as a continuum strain has
received only minimal attention. Where it has been
modeled, the shear deformation has been treated as
frictional slippage between layers of fibers. As such
there has been no consideration of the low-strain re-
sponse of the assembly under shear stress, no elastic
* strain energy due to shear has been calculated, and
only the inelastic mechanisms associated with cata-
strophic shear failure (i.e., massive slippage) have been
dealt with.
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It is certainly true that such simple textile defor-
mations as twisting a yarn [9] or bending a fabric [5]
involve almost immediate shear failure, because the
essentially parallel fibers slide past each other with al-
most no restraint in accommodating large deforma-
tions of the yarn or fabric. The simplest way of treating
this problem is to assume a high initial linear shear
stiffness [ 5] (e.g., equal to the fiber modulus) uptoa |
small critical shear stress. Thereafter, the assembly may
be considered to shear via frictional slippage with no
increase in shear stress. The work done against friction
must be accounted for in the energy equations, but the
tangent compliance in shear for initial shear stresses
above the threshold level may in fact be regarded as
infinite. The critical shear stress levels at which shear
failure begins have been measured experimentally [4]
for various initial transverse stress conditions and fiber
orientations for an oriented unit cell of wool fibers.

In this paper, we present a theory of the shear mech-
anism for an assembly of fibers. We have assumed that
the imposed shear deformation causes either slippage
at contact points in the assembly or elastic bending
deformation of the fiber sections between contact
points. The analysis draws on a previous publication
of ours [3] and follows a preliminary theoretical treat-
ment in which no slippage at the contact points was
permitted [9]. Both of these theories in turn make ex-
tensive use of earlier ideas developed by Lee and Lee
[8] and Komori and Makishima [7].

0040-5175/89/59005-285$2.00



286

The Slippage Criterion for the General
Load Case

In our earlier paper [ 3], we derived a general slippage
condition for the unit fibrous cell under arbitrary ex-
ternal loading. Consider a contact point on any arbi-
trarily oriented fiber section whose orientation in space
may be described using the polar and azimuthal angles
6 and ¢ (see Figure 1). An external compressive load
is applied to the assembly as a whole in the j direction
such that the fiber contact point is required to sustain
a contact force C; as shown. This force C; may be re-

solved into Cj, normal to the bottom contacting fiber

and C;, parallel to it.
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FIGURE 1. Definition of coordinate system, fiber orientation,
) and direction of forces.

Based on the paper of Grosberg and Smith [6] deal- .

ing with the interaction between two fibers, we pro-
posed [ 3] that even in the absence of any external load
on the fiber mass, the slippage of the top fiber in Figure
2 along the fiber in the direction of its axis: would be
opposed on average by a frictional force equal in value
to WF,yb, where WF, is the so-called withdrawal force

per unit length of fiber, which accounts for the mutual -

interference and frictional resistance between fiber
contact points under zero external load, and b is the
- mean free fiber length between contact points along a
fiber. The top fiber will thus begin to slide along the
bottom fiber if

Cp= Cnp + WFb (1

where u = coefficient of friction between two contacting
fibers.
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FIGURE 2. Interaction between two fibers at a contact point.

Furthermore, if the unit cell is subject to a combined
compressive load (such as in a piston-and-cylinder de-
vice), the criterion for slippage given in Equation 1
remains the same but the values used for C;, and Cj,
must also include the components of force due to pres-
sure exerted in the other orthogonal directions. Let C,,
C;, and C; be the net contact forces per contact in the
1, 2, and 3 directions as shown in Figure 1. Lee and
Lee [8] showed that the components of C; normal and
parallel to the arbitrary fiber section shown in Figure
1 are

Ci, = Ci(1 — sin? 0 cos? ¢)'/?

Con = Co(1 - sin? 0 sin? ¢)'/2

Csp = C3sinf

Ci, = C;sinfcos ¢ »
Cop=CasinOsing

Cs,=Csco88 . 2)

Equation 1 is thus equivalent for the general loading
case to

ZC},,ZuZCj,,+WFOb , 3)

ie.,
C, sin 8 cos ¢ + C, sin 8 sin ¢ + C3 cos 8
> u{C,(1 — sin? f cos® ¢)"/* + C,(1 — sin” 6
X sin2 ¢)'/2 + Cy sin 0) + WFob . (4)
The slippage criterion defined in Equation 4 leads

to a modified value for the parameter I, say I’ (which
now specifies the density of the nonslipping contact

o
e



MAY 1989

points on a fiber), as well as the length b, say b’, be-
tween effective or truly supporting contact points. This
modified value b’, which varies with the load case in
question, is used in the beam bending equation to cal-
culate the deflection. We now realize that any numer-
ical solution of Equation 4 will be sufficient to evaluate
I' and hence b'.

Let the numerical solution of Equation 4 (for the
equality only) be

¢cril =A(Cl, CZ, C39 0) (5)

This means that for any fiber section with orientation
6, there will only be a range of values for ¢ where slip-
page will not occur. If Q(8, ¢) sin 8 dfd¢ is the prob-
ability that any given fiber section lies with an orien-
tation in the range 0 to 8 + df and ¢ to ¢ + do, we
can evaluate the double integral for I’ using the nu-
merical solution for ¢

%/2 rn/2
I'=4 f f J'(0, )0, ¢) sin 0 depdb
0 A(C,C2C3,0)
(6)

where
/2 prx/2 .

J'(8, ¢) = 4f f , ¢, ¢') sin &
0 A(Cy,C2,C3,8%)

X [1 — {cos 6 cos & + sin 0 sin ¢
+cos’(¢ — ¢)}1'2de'de ., (7)
whence [3]
b'=V/2DLI |, (8)

where V' = volume of the fiber assembly, D = fiber
diameter, and L = total length of fiber in V. (Note
that the integrand limits might need to be interchanged
depending on the sign of 4(C,, C,, Cs, 8) to ensure
that ¢ remains in the range of 0 to x/2.)

This then provides the means of obtaining tangent
compliance values for the unit cell for a wide range of
initial loading conditions. In this paper, however, we
will consider only the special case of simple shear stress.

Slippage Condition for Simple Shear Stress

For simple shear, there must be two forces P; and
P, of the same magntitude acting on a fibrous unit cube
in orthogonal directions so as to maintain equilibrium.
Let this cube be of volume V and the length of each
side therefore be ¥''/3 as shown in Figure 3. Consider
just one case where, with reference to Figure 3, surface
tractions P; (j = 3) and P, (k = 1) are applied. These
tractions result in as yet undetermined net point contact
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forces C; and C;, at any arbitrary contact point under
consideration. The slippage criterion in Equation 4 thus
becomes '

Cscos 8 + C, sin 0 cos ¢ = u{C; sin 8
+ Ci(1 —sin? B cos? ¢)'/2} + WFb . (9)
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FIGURE 3. Unit cube of volume V.,

Rearrangement of Equation 9 gives an explicit
expression for ¢ in terms of C3, Cy, u, WFy, b, and 6,
which can be solved by substitution to yield a critical
value ¢ci( C3, Ci, 8) for any value of 8, providing the
values of the other terms in the expression are known.
Thus b’ is obtained from Equation 8, using ¢i(Cs,

" Cy, 0) to calculate J’ and I' from Equations 7 and 6.

The mean projections of b’ in three directions are
given [3] by "
b/ =2VK;/DLI' , (10)

where [ 8]

x/2 x/2
K1=f d¢fo df sin? 0 cos ¢ 6, ¢) , (11)

0

/2 x/2
K, = J; de fo df sin® 9 sin ¢ 6, ) , (12)
and

x/2 x/2 ‘ )
K; =f d¢J; db sin 8 cos 6 Q(0, ¢) (13)

(1]

Forces at Contact Points

Following an argument similar to that used in our
previous treatment [3], consider all the slipping and
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nonslipping contact points #; in a small volume of
height b, and cross-sectional area ¥'*/? in the cube V.
If SNG is the proportion of contact points that slip,
then the total external surface tractions may be ex-
pressed in terms of the contributions of both slipping
and nonslipping parts as

and
P, = SNGnp;Cy. + (1 — SNG)ng; G, ,  (15)
where C; or C; = average force per nonslipping contact
point;
x/2 berit
SNG = 4J; J; Q9, ¢) sin 8dbde , (16)

ny; = 2LK;/V [8] , (17)

and Cy or C;; = mean value of the resistance per slip-
ping point, which can be found using the slippage cri-
terion, Equation 9:

*/2 i
cs_,=4f0 fo 6, 6) sin 8

WFob — Ci{sin 8 cos ¢
— u(1 — sin? 6 cos? ¢)'/?}

« e dédy , (18)
and
x/2  derit
WEFob — Ci(cos 8 —usin) s (19

sin 6 cos ¢ — u(1 — sin? § cos? ¢)'/?

Note that because P; (P)) is a shear force, we must use
ng;(npe), not ng(ny;), to relate Cy (Cj) to Pi (Py) in
Equation 15 (14).

Based on the shear stress equilibrium prmcxple, the
shear stress is

|7l = | Pe/Al = |75) = | P/4] ., (20)
where A = V'2/3 the area of the cross section. Thus,
| Pi| = | Pyl 2n

Bringing Equatlons 14 and 15 into Equation 21
yields a constitutive " condition between C; and C;:

-SNG
G= 1-SNG T=snG <
SNGK;
—_—
+ 1= SNGK. Ca + CA (22)
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Shear Stress-Strain Relationship

'In order to define a strain, the deformations caused
by the external surface tractions P; and P, have to be
derived. P; and P, are transferred internally through
all the contact points. Once again the bending defor-
mation of the fiber sections is the main mechanism of
resistance to the imposed shear stress.

Both van Wyk [11] and Lee and Lee [8] made var-
ious simplifying assumptions before calculating the
deflection of the fibers due to the action of the contact .
forces. With reference to Figure 4, we will consider a
single initially straight section of one fiber that is
bounded by two nonslipping contact points at a dis-
tance 2b' apart. Let a third contact point fall at the
midpoint. If we consider a ieference frame in which
points A and C are fixed, we are interested in the de-
flection of the midpoint of the fiber section under the
action of the midpoint contact force.

FIGURE 4. Forces acting on the fiber element.

As explained previously [3], in order to ensure con-
tinuity in curvature at the contact points, conservation
of mass, and no slippage at the (nonslipping) contact
points, we use van Wyk’s equation [11] here to calculate
the beam deflection of the fiber section. After averaging
the deflection over all possible directions of the fibers,
the mean deformation of the small volume of hexght
b, in the cube V is derived as

(23)

where §; = the mean deflection of all the midpoints
of the fiber sections in direction k caused by a midpoint
load in dlrecuon 1, and my, is as given by Lee and Lee

(8l
/2 x/2
my = J; do J; do(1 — sin? 0 cos® 8)

X (6, ¢)sin 8
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» %/2 x/2 f th di £ . -
m22=J; dd’_’; d8(1 — sin? 6 sin? ¢) If the bending modulus B of the fiber is written as

B = Ej = EsqxD*/64 31
X (6, ¢) sin 0 ly = EmnxD’/ @n
2 2 ' ‘where Ey= Young’s modulus of the fiber, I,= moment
my; = f de f db(sin? 8)Q(6, ¢) sin 8 of inertia of the fiber, and = a shape factor for fiber
0 0 bending, then the shear modulus G can be written as
my; = My, ' Ti
/2 /2 g ' G = ;J:
= f' d¢f do sin? 0 sin ¢ cos ¢ (0, ¢) sin § s ;
0 0 192EqV K, [ C,k}
= ———=—=1{(1 — SNG + SNG =% , (32
ms=my =750, 17 | ) o R
x/ w2 i ) which should be equal to
=f d¢f db sin @ cos 0 sin ¢ Q(0, @) sin § :
0 0 o o
Gij=—
mz = My3 \ R
x/2 . . _ 192E/'1)V1‘3Kk _ g_S,L ‘
=J; d¢J; d0 sin 0 cos 6 cos ¢ (0, ¢)sin b . TISE NI [(l SNG) + SNG C,~] . (33)
, (24)
The shear strain now follows by definition [10]. If Evaluation of the Theory

a and @ are the angular deformations of the face inthe  Eog THE SPECIAL CASE WHERE FIBER SLIPPAGE
Z,Y plane with respect to the Z and Y axes, respec- ¢ EXCLUDED
tively, caused by Pk and P;, then with reference to Flg-

ure 3, When the mechanism of fiber shppage is excluded,
_ N . that is, when SNG = 0, it is possible to evaluate the
a=tan a = (8 + 5)/b/ , (25)  theory using the rules derived from ordinary contin-
and v uum meéhanics.} All relevant equations become
B~tan g = (5; + 5,)/bs . (26) P = nyC; (34)
N So the shear strain due to P; and P, can be written \ : Pi=mCr , (35)
- and from Equation 22,
Ek,, + 5_,/\ 3 + 5“ '
M= Tg 5 27 ; G/ICv=Kj/K, . (36)
The shear stress is defined by Thus from Equations 32 and 33, we have
- W . = 2/3 192EqV K; -
Tjk PV Tkj P/V . (28) ij = ?s_(ljn_k_fTI_Zi , (37)
Substituting Equations 10 and 23 into Equatlon 27, ?
we obtain and
_ GVS(, k) ' _1N2EmV/K,
k7 Gt 9
where S(J, k) is given by . ; Taking Equation 36 into Equation 30 gives
S(j, k) ‘ I{J m“ +m,k+mﬂ+mk,
’ C SG. k) KK,
(K,\mu\ + K; mk, + K, —= m,;\ + Kj )/K;.K . ,
= ( k(mkk Ck mjk) J(mkj Ck m”))/ Hence ‘

KK . G0 Gk=Gy . (40)
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Furthermore, we can test Equation 37 for some simple
distribution functions.

* Random Fibrous Assembly

In'this case the assembly should behave as an iso-
tropic continuum. From Komori and Makishima [7],
the specific form of the density function is

Q(6, ¢) sin 6 = sin 6/2x . (41)
We can also calculate that ‘ ' ‘
ki = ky=ki="% , (42)
I=x/4 , (43)
my=Y (44)
and
mi=x/6 . (45)
Since K; = K, we have
G=Cc » - (46)
and
S(j,k)=%‘1(l+$) , 47
whence 4 |
Gik -2 EmV,? et (48)
16 (1+1/7)

Now G for an isotropic solid is related to the tensile _

modulus E and Poisson’s ratio » by the relationship
G=E2(1+v) . (49
If we use the results of Lee and Lee [ 8] and multiply

their result by the factor 4, as follows from the use of

the revised beam equation, then we derive
9
E= 3 EmqVy , (50)

and , .
v=1/n . (51)

Substituting these values into Equation 49 produces

Equation 48, which is the required proof.

Uniaxially Oriented Fiber Assembly

The density function proposed by Lee and Lee [8]
for this transversely symmetrical case is

a1 _
(6, ¢)sin § = Irsng [6(6 — q)

+6{0—(x—q)}]lsind , (52)
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where 5(8) represents the delta function and ¢ is the ~
" helix angle of the hehcally cnmped oriented fibers (0

<g<x/2).
The relevant parametem may be calculated as fol-
lows:

k, = ky = sin g/ 2%
ky = coé ql/4-.
myy = my = (2 - sin® g)/8
ms; = sin? g/4
myy = my = sin’ g/4x
M3 = M3y = My = my3 = singcosg/2x . (53)

The recalculated compmssnon moduh and Poisson’s
ratios are as follows [8]:

E, =Epn ‘
_& 3 sin’ ¢ G2 e
L
En=2 Env, cot? o O 58)
33 "2 Ny s Cot™ q ’ g ]
. 2sinzé
Gk Ry ey g gl .(56)
and
‘8sin? q
Vi3 =3 = -?m (57)

By using the results in Equation 53 we can calculate
the values of S(j, k) in terms of different directions:

S(1,2)= S(2, 1)

_2x*—x?sin g+ 2rsing

| e
. and 7
S(1,3)=85(2,3)=8(3,1)=8(3,2) - .
. 2 .
=2ﬂ'+wsm g+.8singcosgqg (59)

sin ¢ cos ¢

So the shear moduli can accordingly be written as

Gi2 = G2 S
384 sin?
== EmV,/’I* q—4 . (60)
2(2 -sin’q) + ;sinzq
and
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Gi3=G3 =Gn =0y
192 sin g cos g
= — EmmV,/I? - -
Emvil 27 + 7w sin g + 8 sin g cos ¢

(61

There is a similar relationship between the shear and
compression moduli and Poisson’s ratio for the trans-
versely symmetric continuum:

Gia=Eu/2(1 +v2) (62)

By inserting Equations 54 and 56 into Equation 62,
we reproduce Equatxon 60, i.e., the equatlon we have
. derived.

FOR THE CASE WHERE FIBER SLIPPAGE OCCURS

In the case where fiber slippaée does occur, symmetry

relations between shear and compression moduli and,

Poisson’s ratio are not necessarily valid. However, in
any case,

Gy should equal Gy; (63)

and we will prove this below.
According to the definition of the shear modulus,
Equation 63 can be writtenas

= —4— = G (64)
ki

Taking v in Equation 29 into Equation 64 and elim-
inating identical terms gives :

Pk P_, '
- = ol 65
CeSUr K -GSk, ) (63)
where
S3j, k)
Kimy, + K,-mk,- + KA C mi; + Kl C
_ G a™ e
KK ’
and
S(k, j)
Km,,+KAmJA+I(,gmA,+KAg My
= J . (67)

KK,

For shear equilibrium, the shear forces P, and P;
should be equal, and Equation 65 can therefore be
written as
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CAS(J, k) = KiCimy + K;Crmy;
+KACm,A+KCm,,

= G;S(k, ) (68)

‘Hence the condition of Equation 63 is satisfied.

Discussion

This paper reveals that the low-strain response of
fibrous assemblies to shear can be modeled using a
combined mechanism of fiber bending and slippage at
the contact points. As such, the internal deformation
is similar to that created by external compression. The
derivation is complex, but the results can be checked
using simple symmetry rules relating the mechanical
constants for special cases. The accuracy of the derived
modulus value may be inferred from the earlier
compression experiments of Lee and Lee with which
it is related via these symmetry requirements; however,
more precise evaluation of the theory must await the
completion of the full tangent compliance matrix for
the unit fibrous cell. Once all the mechanical interac-
tions are modeled for the three-dimensional load case,
it will be possible to apply the full theory directly to
practical loading cases and more importantly to yarns
and higher order textile structures.
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