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ABSTRACT

An analysis of a fibrous assembly at large deformations has been explored as a
means of predicting the compress10nal behavior, especially the compresswn hysteresis.
The essential principle is to classify all the fiber contact points in the assembly as
either slipping or nonslipping, so they can be dealt with separately. The compressional
modulus and Poisson’s ratio are derived and shown to be dominated by the mechanical
properties and the directional distribution of the individual fibers within the assembly
An iterative algorithm, in which the system geometry is updated on successive incre-
ments, is developed to cope with large and nonlinear deformations. A comparison
between the theoretical prediction and the experiment has indicated reasonable agree-
ment. An improvement could probably be achieved by including the contrlbutlon of

fiber viscoelasticity to the total hysteresis.

The mechanical behavior of a unit cell of fibrous
material is a subject of fundamental importance in the
science of textile assemblies [11]. The compression
properties of such a unit cell have been studied quite
extensively using various types of apparatus [4], but
the theoretical explanation of the observed compression
behavior of the assembly in terms of the combined
behavior of the individual fibers comprising it has re-
mained largely unsatisfactory.

For many years, this subject was dominated by an
important early paper by van Wyk [12]. Some thirty
years later, Komori and Makishima [7] identified and
developed their concepts of analysis based on the ori-
entation density distribution. Lee and Lee [9] have
recently used these concepts to create a much more
comprehensive mechanical analysis.

Both of the important theoretical mechanical studies
[9, 12] postulated that the compressive strain of the
assembly of fibers is translated directly into bending
strains in the individual fibers, and that the resistance
of the assembly to an externally imposed stress arises
solely from the resulting increase in bending energy in
the fibers. Other workers have also recognized [3, 4],
however, that the compression of fibrous masses causes
large and significant fiber-fiber slippage, much of which
is irreversible.

The incorporation of this second mechamsm by
which the fibers can accommodate the change in di-
mensions of the assembly is the main novel feature of
our current analysis. It has made possible the theoretical
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prediction of the full hysteresis curve for compression
and recovery. As the response of the material is non-
linear, it is presented as a tangent compliance term
dependent on the initial state of stress and strain {2].
As such, it is in a form suitable for incorporation into
a nonlinear computational package such as a finite-
element formulation, in which the materials property
matrix must be specified by the user.

Definition of the System Geometry

The analysis of the assembly of fibers proceeds from
a consideration of one section of length 2b of an ar-
bitrarily chosen fiber whose direction with respect to
the conventional coordinate system is defined by the
polar angle 6 and the azimuthal angle ¢, where 0 < 8
< 7 and 0 < ¢ < =, as shown in Figure 1. This approach
was pioneered by Lee and Lee [9], and we have kept
to their notation as far as possible. Although our anal-
ysis was partly inspired by their work and starts in the
same way, there are important differences, however,
and we will point these out as the analysis develops
and diverges.

Let us assume [9] that for the fiber assembly in
question, the probability that a fiber lies in the infini-
tesimal range of 6 to 6 + d6 and ¢ to ¢ + d¢ is given
by Q(6, ¢) sin 8d6dp, where Q(0, ¢) sin 4 is the density
function of orientation of the fibers, Komori and Ma-
kishima [7] showed that under these conditions,

b=V/2DLI , (n
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FIGURE 1. Definition of coordinate system, fiber orientation,
and direction of forces.

n,= DLV , Q)

I= fo 8 J; deJ(8, 9)0, ¢)sind , (3)
J= J;' 4o’ J;"d¢’n(0” ¢/) sin 01[1 _ {Cdsﬂcos Py

+ sin 6 sin 8’ cos (¢ — ¢')}*]'? )

where b = mean free fiber length, D = fiber diameter,
L = total length of fiber in volume ¥V, ¥ = volume of
the fiber assembly, and n, = number of contacts in
volume V.

In Figure 1,

OA = b(sin 8 cos ¢, + sin 0 sin ¢i> + cos 653)
(5)

where {,, i, and {3 are the unit vectors in the x, y, and

z directions. Hence the mean projection of the section

OA on the axes 1, 2, and 3 for the given direction den-
‘sity function is [9]

2V . .

B,—DLIK,- i=1,23, (6)

where

x/2 z/2
K, =‘J; d¢J; dosin20coso UG, ¢) , (D

x/2 f/'2 .
K, = J; do J; disin?dsing U0,¢) , (8)
and |

/2 */2
K= j; do J; db sin 0 cos 6 (6, ¢) )]

TEXTILE RESEARCH JOURNAL

Mechanical Interaction Between: Fibers

Consider at this stage the interaction between two
fibers at one arbitrarily chosen point as shown in Figure
2. Grosberg [5] and Grosberg and Smith [6] showed
that even in the absence of any external load applied
to a mass of fibers, there were still significant nonzero

_ contact forces between fibers in the assembly, since the

fibers are prevented from recovering their lowest energy
configuration because of mutual interference and fric-
tional restraints to slippage.

FIGURE 2. Interaction between two fibers at a contact point.

- This interaction can be detected by single fiber with-
drawal experiments. Grosberg and Smith {5, 6] have
shown theoretically that the withdrawal force WF per
unit length of fiber is approximately proportional to
the external pressure P, but they also showed that when
P = 0, a finite withdrawal force is needed. This arises
because when P is reduced to zero, there is still 4 non-
zero force at the contact points. One interpretation is

_ that we might write

WF=uP+WFy , (10)

where P = external pressure applied to the fiber mass,
' = proportionality factor with dimensions of length,
and WF, = value of WF when P = 0. This means that
even in the absence of any external load on the fiber
mass, the slippage of the top fiber in Figure 2 along
the fiber in the direction of its axis would be opposed

on average by a frictional force equal in value to WFob.

Now consider that an external compressive load is
applied to the assembly as a whole in the j direction
such that the fiber contact point is required to sustain
a contact force C; as shown. This force C; may be
resolved into C;, normal to the bottom contacting fiber

1
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and C;, parallel to it. The top fiber will thus begm to
slide along the bottom fiber if

Cip= Ciup + WFob (11)

where u = coefficient of friction between two contacting
fibers. If the unit cell is subject to a combined com-
pressive load (such as in a piston and cylinder device),
the criterion for slippage given in Equation 11 remains
the same, but the values used for C;, and C;, must
also include the components of force due to pressure
exerted in the other orthogonal directions. Let C;, (3,
and C; be the net contact forces per contact in the 1,
2, and 3 directions as shown in Figure 1. Lee [8]
showed that the components of C; normal and parallel
to the arbitrary fiber section shown in Figure 1 are

Cin = Ci(1 —sin? 8 cos? ¢)!/? C,, = C, sin 8 cos ¢
Can = Co(1 —sin? 8sin? ¢)!/?  C,, = C, sin 6 sin ¢

Cs, = Cysin Cs, = Cscos b

(12)

Equation 11 is thus equivalent for the general loading
case to

S Cip2uZ Cint WFb (13)
thaf is,
C,sinfcos ¢ + C;sin 8 sin ¢ + C3cos §
= u{Ci(1 — sin? 8 cos? ¢)'/?
+ Cy(1 — sin? 0 sin? ¢) '/
+ Cj sin 6} + WFyb (14)

We have as yet found no general analytical solution
to Equation 14, although it is fundamental to the de-
velopment of a general tangent compliance matrix, A
solution for the special case of uniaxial compression is
relatively straightforward, however, and we present it
here because it still provides new insights into the clas-
sical problem of the compression of fibrous masses.

Effect of Slippage on Geometrical
Parameters '
If we now consider only the three separate possibil-
ities for uniaxial compressxon of an arbitrarily oriented

fibrous mass, then usmg Equation 12 we obtain from
Equation 11 the following three equations:

forC,#0,C,=Cy=0
C, sin 6 cos ¢

= Cy(1 —sin? 0 cos® )"2u + WFeb ; (15a)
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for C, # 0, C,

C,sin @ sin ¢

=C3=0’

= C(1 —sin? @sin? ¢)"2u + WFb ; (15b)
for C3 # 0, Ci=C = 0,
Cicos § = Cssin 0 p + WFob (15¢)

Equation 15c reveals that for compression in direc-
tion 3, there is a critical polar angle 4, that dictates
whether a contacting fiber will slip on the arbitrary
fiber section shown in Figure 2. This critical angle is
independent of the azimuthal angle. The equations for
compression in the other two directions reveal a more
complex criterion for slippage, though this is simply a
consequence of the arbitrary choice of the orientation
of the polar coordinate system. The geometrical pa-
rameters such as (8, ¢) can equally well be expressed
in terms of a different coordinate system where the
polar and azimuthal angles are redefined to refer to
different axes. Let us define three sets of polar coor-
dinate systems as described in Table I and illustrated
for compression in direction 1 in Figure 3. Using the
angles as defined in Table I, we thus have three equa-
tions of identical form for the three load cases defined
in Equation 15:

Cicosa=zCisinau+ WFb , (16a)
Cz cos ¢ = Cz sin W pt WFob , (l6b)
Cicos = Cysinf u+ WFyb {16c)
3
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FIGURE 3. Redefinition of polar and azimuthal angles to define
the slippage condition due to a net contact force in direction 1.
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TasLE L. Polar coordinate systems used to determine the three
critical angles in the three Cartesian directions.

Jj Direction Polar angle Azimuthal angle
1 x @ B

2 y v v

3 z (] ¢

J J X 7;in general

In general this can be written as

C; cos X; = C; sin X;u + WFyb (16)

We can find the critical value of X.; at which slip-
page begins for each of the three directions j by solving
Equation 16 for the three cases of limiting friction:

o8 X — p sin X = WFob/Cj , a7
whence
_ wWFb + {quFozb2
G o
~aen(EE )
sin X, = ‘ T2 (18)

This depends only on the as yet unspecified value of
C;, the net additional force in the direction j, which
is supported by the contact point in question. All the
other variables in Equation 18 may be regarded as
known. Hence once X,; is known, it follows that for X;
> X, there is no slippage, and for X; < X,; all points
of contact on the fibers (or fiber sections) whose ori-
entation are defined by X; will slip.

Accordingly it is necessary to define an effective
mean free length between nonslipping contact points,
the value of which depends on the direction j of the
applied force. The value of this effective mean free
length will ultimately determine the deformation of
the assembly as a “system of bending units.” At this
stage, let us simply define the three values for b;' (using
the notation of Lee and Lee {9]):

b/=V/2DLI; , 19)

where
/2 r/'2 .
I;=4 f deJ; dr,J (%, 7)QUX;, T)sinx;
Xd
(20

and

x/2 x/2 ‘
Jj =4 .J. dxj" J; de’Q(xJ", Tj')
Xq"
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X sin X[l — {cos X;cos X/ +sinX;
Lo
The mean values of the projections of b;’ in the three
directions are ‘

| 5, = 2V/DLL)K; , @)

where K; remains the same as given in Equations 7~
9. Hence the effective number of contact points per
unit volume n,;’ as viewed from the three directions
becomes

X sin Xj' Ccos (1']' - 'le)2}1112

nvj, = DLZIJ/V ’ (23)

where those that slip have been eliminated in the cal-
culation of I;.

Note here that we will use an incremental method
later to solve the equations for equilibrium for the unit
fiber cell for large deformations. It will therefore be
necessary to recalculate many of the geometrical pa-
rameters on the completion of each increment. This
applies to the orientation distribution function, the
volume ¥, and the value of C;. The equations for doing

. this are given in the Appendix without derivation.

Net Force per Contact Point

The external stress on the unit fibrous cell must be
transferred internally through the various contact
points. Any given cross section normal to j will intersect
stress-carrying sections of fibers but few if any actual
contact points. Now following Lee and Lee [9], con-
sider all the slipping and nonslipping contact points
ny; in a small volume b; of unit cross-sectional area
normal to j and of height b;. If SN is the proportion
of contact points that slip, then the external stress P;
must be as follows: ’

P, = SNm;Cy + (1 = SN)m;C; , (24

where C;; = mean value of the resistance per slipping
contact point within b, and C; = average force per
nonslipping contact point.

Now, from Lee and Lee [9]

‘ np; = 2LK_,/V N (25)
X x/2 )
SN=4 fo _ fo Q(x;, 7;) sin xdX;dr; . (26)
We can find the value of C;; using Equation 16:

L Xgj /2 N cin X
C, =4 fo ax, fo dr, X 1) Si0 X WFoh

CosS X;— u sin X;
27
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Since all the nonslipping contact points may be thought
of as carrying an equal load,

- (PJ - SNn[,,-Cs,-)

(1 = SN)ny, @8

C;

Mechanism of Deformation

Both van Wyk [12] and Lee and Lee [9] made var-
ious simplifying assumptions before calculating the
deflection of the fibers due to the action of the contact
point forces. With reference to Figures 1 and 4 (from
Lee and Lee [9]), we will consider a single, initially
straight section of one fiber that is bounded by two
nonslipping contact points at a distance 25, apart. Let
a third nonslipping contact point fall at the midpoint.
If we consider a reference frame in which points A and
C are fixed, we are interested in the deflection of the
midpoint of the fiber section under the action of the
midpoint contact force.

Let us assume that the fibers are all uniform, iden-
tical, and linearly elastic in bending. Torsion,
compression, and extension of the fiber section are all
considered negligible. No new contact points are
formed for a small load or for an incremental increase
in the load.

In his original paper, van Wyk [12] suggested that
the correct beam deflection theory to use when cal-

" . culating the deflection of point B is that for a beam

with built-in ends. This equation ensures continuity in
curvature at the contact points, conservation of mass,
and no slippage at the contact points. Lee and Lee [9],
however, used the equation for a beam with free ends,
which we regard as inappropriate. We use van Wyk’s
equation [12] here, which results in a lower deflection
by a factor of 4:

Cjbj'3
B

m (+a.] #+ k; —’j = k) ’ (29)

1
6]1( == g
where d; = the mean deflection of the midpoint of all

the fiber sections in direction k, B = the flexural rigidity
of the fiber, and m is as given by Lee and Lee [9]:

*/2 */2
mp = f d¢f d0
0 0

X (1 — sin? § cos? 6) (6, ¢) sin 6
x/2 r/2
Mo = f dd) f db
~Jo o
X (1 — sin? @ sin? ¢)Q(0, ¢) sin 6

x/2 /2
msy3 = J; do J; dé(sin? 0)Q(0, ¢) sin 0
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/2 /2
myp = my = f d¢ f dé
o )

’>< sin2 0 sin ¢ cos ¢ Q(8, ¢) sin 6

x/2 x/2
Mory = M3y = J; d¢J;) do

X sin @ cos 8 sin ¢ (0, ¢) sin §

x/2 x/2
ms = m3 = f d¢ f do
0 0

X sin 6 cos 8 cos ¢ (8, ¢) sin 8 30)

Equation 29 applies only for small strains of the
bending element. In the incremental approach used to
accommodate the large deformations of the assembly
as a whole, we have assumed that the actual bending
strains in the fibers remain small (the validity of this
assumption depends on the geometry and particularly -
the distance between contact points). The incremental
form of this equation as used here is
_ ., 1ach?
b= £ =

Strictly speaking the case we present in this paper is
also complicated by the possible action of additional
slipping contact points acting on the fiber section shown
in Figure 4 between points A and C. Their effect on
the deflection of B is not likely to be large in most
cases, however, because the contact force that can be
sustained is generally small. Let us make the simplifying
assumption that they have no net effect on the deflec-
tion of point B, and indeed that the slippage at these
slipping contact points continues until the movement
is such that the deflection of point B can be accom-
modated as dictated by Equation 31.

(31

m .

FIGURE 4. Deformation of a fiber element due to a contact
point load C; (from Lee and Lee [9]).

Both van Wyk [12] and Lee and Lee [9] related the
deflection of the midpoint of such a bending element
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_to the general compression of a layer of such bending
units of thickness b;;". In effect, they considered that
such a layer would on average change in thickness by
an amount equal to §;;. This seems the simplest as-
sumption to make. Hence, proceeding on this basis for
our uniaxial load cases, we have

AEJ = Abjj/bj,-’ (32)

Stress-Strain Relationship

The general tangent compliance matrix for the unit
fibrous cell may be written {2] as

Aé]
Aey
A€3
Ay
Av23
Ay, ;
Cri Cn2 Cns Cris Cnis Crie
Crai Crzz Cr2s Craa Cras Crae
_| Crsr Cr2 Cris Craa Cras Crs
Crsi Crez2 Crazs Cras Cras Crue
Crsi Crs2 Crs3 Crsa Crss Crse
Crei Cre2 Cres Cresa Cres Cres
' AG]
A0’2
A0‘3
X ATy B (33)
Aty
Aty
which may be summarized as
Ae = [Cr{00, &)] Ac (34)

In a previous paper coauthored by one of us, the
value of the Cr3; term in this matrix was explored for
the special case of a transversely symmetric, oriented
fiber bundle for large tensile strains in dxrectxon 3of
preferential orientation.

If we retain generality here regardmg the orientation
of the fibers, we must consider all twenty-one inde-
pendent terms in the compliance matrix for the case
of general anisotropy. In this paper, however, we are
concerned only with the range in values of Ag, Wthh
encompasses compfessive stresses.

As we have not yet solved Equation 14 for the general
combined compressive load case, we are concerned
here with a valid solution only for the simple situations
of compression where no more than one of the oy,
@30, OT 030 terms is nonzero. In this case Equatlon 32
is applicable:
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1/Crj; = Erj; = (—AP;/A4))/ A¢ (35)
and ‘
Ady/ b
— .o oy, = i, = - —;——
ET]JCTJI\ VTjk Aajj/Bjj' s (36)

where 4; is the cross-sectional area of the fiber assembly
with respect to P;; in the case of unit area, 4; = 1.

Substituting in Equation 35, using Equations 19, 22,
23, 25, 31, and 32, and using

B= Eflf , (37)
= EnquD*/64 (38)

where E,; = the fiber Young’s modulus, I, = the fiber
moment of inertia, n = the shape factor of the fiber
related to bending, and V; = xD’L/4V = the volume
fraction of the assembly (39), we obtain

192 KAI?
R S L RS V2 Rt Al
1/Cryj = Egj ) E/" f m,;
AC;;
1-SN+SN—L
X( S. S. AC,») (40)
CJ=1,23

Substituting in Equation 36, using Equations 22 and
31,

Jj¥k
— . g = . =M j = 41
ET]]CT]k YTk ‘mijkIj J 1,2,3 41)
‘ k=123

Incremental Geoinetry Changes and.
Fibrous Assembly Hysteresis

Because we will use an incremental method to cope
with the large deformations typical of fibrous assem-
blies, it is necessary to define the algorithms that are
to be used to update the system geometry on successive
increments. Equations 40 and 41 show that the tangent
compliance in compression Cr;;and the Poisson’s ratio
vy depend on various parameters that need to be up-
dated: Aj, Vf, Kj, Ij, mjj, K, M, and I,. Because
the transverse stress remains zero, I; = I and this value
also needs updating as the orientations change.

Let us consider the various stages in the classical
case of a fibrous assembly with an initially random
orientation of the fibers. In this case {7, 9, 12],

Ry Xjs Tj) sin_ X; = sin Xj/Zl' 42)

The fiber properties D, u, WF,, Vyo, E;, n, and L are
regarded as being known.
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COMPRESSION STAGE

Calculation proceeds by the successive application
of incremental loadings. In practice, a small arbitrary
increase AC; in the average force per nonslipping con-
tact point C; is applied. For each value of C;, a cor-
responding critical angle X.; can be obtained from
Equation 18. The mean resistance provided by each
slipping contact point, C;;, is then obtained through
Equation 27. This gives us a value for AC;.

After calculating the relevant geometrical parameters
I;, I, K;, Ky, mj, ngj;, and my;, the value of P; and
hence AP; follows from Equation 24. The values of
A¢;, Erj;, and v, then follow from Equations 32, 40,
and 41.

Before starting the next iteration, we must use the
values of A¢;and v7 to update the geometry. The pro-
cedures are described in the Appendix.

RECOVERY STAGE

The external load is removed during this stage. In
practice this is once again achieved by a succession of
small decreases in the value of C;, but the behavior of
the slipping contact points is subtly different during
recovery. Referring again to Figure 2, we see that now
the cause of the recovery is the stored bending energy
in the lower fiber, but this applies only a normal force
to the slipping fiber. Even when the value of the normal
force C;, is reduced to zero, the top fiber will not slip
back “up” the lower fiber.

We have considered two alternative assumptions to
model the necessary return slippage in sympathy with
the recovery of the bent fibers. The first option is to
assume that if C;; < 0, the contact will in fact be lost
altogether, and hence the slipping contact points will
contribute nothing during the recovery phase and will
simply slip freely while carrying none of the reduced
external load. The second option is to assume that a
finite value of C;; pointing in the reverse direction (up
the lower fiber in Figure 2) is needed to overcome the
resistance WF,b at the contact. Under these conditions,
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Hence the analysis proceeds in a fashion similar to
that used previously, except that now

APj = (1 - SN)nz,-ACj - SNm,,-AC;,- (44)
However, now
X x/2
co=a["ax [ droo, 7
X sin X;WFob sec X; . (45)

The critical angle follows as before from Equation
18. The tangent modulus now becomes

192 , KFIE AC;
ETjj— 1I'2 Ej'an m,; (l SN - SN ACJ)

(46)

As recovery proceeds with reductions in C;, the critical
angle also reduces, but the changing orientation func-
tion also ensures more fibers at a lower polar angle.
The path on recovery thus differs from the compression
curve, and the external load P; is reduced to zero, while
the assembly still contains some strain energy in the
bent fibers. This energy is now locked into the assembly
by virtue of its own internal friction.

If the assembly is once again compressed, the stress-
strain curve follows a new path different from the orig-
inal path. The mechanism deseribed in this paper thus
provides a quantitative mechanical explanation for the
well known compression hysteresis cycle of fibrous
materials together with the continual reduction in re-
sistance to compression on successive compression
cycles.

Evaluation of the Theory

In order to evaluate the theoretical model, we con-
ducted a number of unidirectional compression ex-
periments using an Instron tensile tester with approx-
imately random fiber assemblies. All the wool samples
were prepared with identical volumes but different
masses, i.e., different volume fractions. The fiber prop-
erties needed are shown in Table II.

i 0 = WF, 4 . . .
C, cos ob 43) Figure 5 shows a comparison of the theoretical and
We prefer the second of these two options. experimental results for compression hysteresis. The
. TaBLE I1. Fiber properties.
Property Symbol Value Unit Source
Mean fiber diameter D 37 pm measured
Fiber initial modulus E, 6.3 X 10° N/cm? [10]
Fiber shape factor for bending 7 1 - assumed
Withdrawal force without loading WF, 0.17 mN/cm n
Coefficient of friction between fibers o 0.3 - - [10]
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2.5F

0.5k

1 2 4
SAMPLE THICKNESS, tM

FIGURE 5. Comparison of theoretical (- - -) and
experimental (—) results. ¥, = 0.00649.

full height of the test specimen is shown on the abscissa
* to indicate the scale of the inaccuracies. The predicted
deformation is slightly smaller than that obtained ex-
perimentally, which indicates that the average modulus
predicted is higher than the observed value. The width
of the predicted hysteresis curve is somewhat narrower
than the experimental curve, but this is to be expected
because the viscoelastic nature of the fibers has been
ignored. Figure 6 shows the predicted curves corre-
sponding to repeated compression cycling.

5 5.0 5.5 6,0
SAMPLE TNlCKNESS o™

FIGURE 6. The mechariical response of & ﬁhermmbbr under
repeated compression cycles. Vo = 0.0143,

The predicted curves giving the response of a fiber
- assembly under smatl and large load ranges are shown
in Figure 7. As the maximum load increases, the re-
sidual strain and the width of the hysteresis loop be-
come-larger. We predicted an almost linear elastlc re-
sponse for the small load case.
The effect of fiber slippage during compression can
also be evaluated by comparing this theoretical model
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2 " N i n N
6.6 6.7 6.8 69 7.0 7.1 7.2 T3
SAMPLE THICKNESS, cM

FIGURE 7. Mechanical behavior under large (——) and
small (- - -) ranges of load. Vo = 0.1.

with the results of Lee and Lee [9] for the initial
compression stage as shown in Figure 8. Lee and Lee
excluded the slippage mechanism from their analysis
and, as they realized, this resulted in remarkably high
" values for the predicted initial modulus. Furthermore,
Lee and Lee used the beam bending equation for free
ends, which assumes four times greater flexibility than
we have assumed here (and van Wyk [12] as well). In

our model, however, the results are more consistent

with the measured values.
T I
/

8k /

1,

t- |- ’/
5k

g -/

A

gl /

& r /'

Z L,," ________________
o - -—o——-

4 s P g
0.2 O 4 0. 6 D 8 2 1.8 2.0

CUBIC OF FIBER vm.um M:g:ol,ﬂa & u‘
FIGURE 8. Initial compression motfulﬁc from different methods:

{---~-) predicted by Lee and {Q,WL—O)mmmdbyue
mdLec{9l (--—)ourpmh;‘-ég:mfi

Figure 9 shows the changes in Poisson’s ratio in the

compression stage. An interesting observation is that
at some points, the values of Poisson’s ratio are larges ..~

than 0.5, indicating the difference between a ﬁber“&‘
sembly and an ordinary solid.

Table III gives some more detailed Oommmtput
data showing how various theoretical pllmrs alter
during one compression and recovery cycle.
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Conclusions

0.7
el Under deformation,; all the fiber contact points in a
fibrous assembly can be divided into two catégories of
o ~ contact points according to whether they slip or do not
Soat slip, based on the criterion of the critical slipping angle.
g . The different contributions of these two categories of
g fibers can then be treated separately so as to derive the
o2 modulus, Poisson’s ratio, and other mechanical prop-
ok erty parameters that are more realistic than previous
. . . . \ . . results. Based on such a treatment, it is then possible
: P oueLE THICKESS, o6 - . to predict the mechanical behavior of fibrous assem-
: ; blies under large deformations using an iteration tech-
FIGURE 9. Changes in Poisson’s ratio under compression nique. For each step of the iteration, as the load and
and recovery. V7 = 0.00649 the critical slipping angle increase, all such parameters
TABLE 1. The changes in relevant parameters at each iteration step.”
Ty : Riv ) th‘v Eg9 E;, C.v s v C},
cm mN deg Vi mN/cm? mN/cm? mN/pomt mN/point SN I
During compression ‘
- 8.05 9.0 10.574 0.3248 183.25 0,052 0.001 0.04 0.017 0.770
7.65 18.8 " 56.067 0.7606 19.26 3.636 0.029 0.12 0.434 0.327
7.25 29.8 66.006 0.3155 18.84 2920 0.050 - 0:28 0465 - 0.59
6.83 60.2 69.380 0.1332 61.98 3.493 0.050 0.52 0.368 1.003
6.59 1115 70.875 0.0450 200.77 2957 0.038 0.84 0.245 1.453
6.40 1874 71.658 0.0283, 391.94 2.590 0.033 1.25 0.199 1.637
6.24 s 2871 72.116 0.0201 640.34 2,176 0.029. 1.73 0.168 1.762
6.11 (4125 72.407 0.0155 939.5 1.814 0.025 2.29 0.146 1.852
5.99 569.5 72.603 0.0128 1303.3 1.474 0.023 292 0.124 1.922
5.88 755.0 72.741 '0.0104 1733.2 1.245 - 0.021 3.64 0.111 1.979
5.79 9740 - . 72.842 0.0087 ¢ 22236 1.060 0.019 444 0.100 . 2.024
5.72 1137.5 72918 0.0069 2393.5 0.782 0.018 5.32 0.090. . 2,065
564 13554 72976 0.0057 2652.0 0.642 0.017 6.29 0.085 2.090
5.56 1596.5 73.022 0.0048 2996.0 0.528 0.016 7.33 - 0.078 2.118
548 1858.0 73.059 0.0040 33753 0.437 0.014 8.44 0.072 2.144
5.40 2139.3 " 73,089 0.0035 3770:1 0.365 0013 . 9.65 0.066 2.168
5.39 2191.1 73.093 0.0030 4185.7 0.340 0.012 - 9.81 0062 = 2.189
5.38 2230.7 73.096 0.0029 4254.4 0.331 0.012 10.00 0.061 2.192
5.37 2272.8 73.100 0.0029 - 43084 0.324 0.012 10.17 0.060 2.195

5.36 23174 73.104 0.0028 4364.7 0.316 0.012 10.35 0.060 2.197

During recovery

5.50 1692.6 73.104 0.0028 4424.2 0.123 0.005 '7.55 0.059 2.200
5.64 1182.5 73.031 0.0036 3725.9 0.181 0.005 533 0.067 2.166
5.7 755.9 72.919 0.0045 31148 0.275 0.006 3.46 0.075 2.129
5.91 399.6 72.711 0.0059 2602.2 0.444 0.007 1.85 0.084 - 2.089
6.05 69.7 72.202 0.0082 24093 0912 0.007 031 0.092 2.051
6.18 343 66.757 0.0096 2061.8 2.383 0.005 0.16 0.072 . 2.095
6.20 157 " 60314 0.0096 2177.9 1960 - 0.003 0.07 0.049 2.158
6.21 5.5 43.256 0.0093 2388.0 0.510 0.001 0.02 0.183 2.240
6.213 0.12 0 0.0092  ~ 2503.2 0 . 0o 0o 0 2.280
6.215 0.04 0 0.0092 24933 0 0 0 0 2.280
6.215 0.01 0 0.0092 - 2493.2 0 0 0 0 . 2.280
6.215 0 0 0.0092 24931 . 0 0 0 0 2.280

* T = sample thickness; E; + E, = E,;, where E, and E, are the contnbuuons ‘of nonsllppmg and shppmg contact pomts, respectively; j
= 3,k = 1, 2; cycle = 1; Vyo = 0.00649.
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as the volume fraction and the directional distribution
function have to be updated using the new critical slip-
ping angle and the previous strain. The opposing effects
of slipping fibers and unsymmetric parameter values
in the compression and recovery stages are the main
causes leading to different mechanical responses or
mechanical hysteresis.
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Appendix

We used the following equations to update the vol-
ume fraction and the orientation distribution function:

Vy = Vio/(1 + 203163 — &)

For the first step after starting from a random dis-
tribution, :

X/, 7,) sin X;'dx;'dr; m Q(X;, 7;) sin X;dX;dr;
_ L( H,* tan® X/’ )'/2
2r \1 + H\?tan? x;
240
and so on for subsequent increments when
H=(+ e‘3)/(1 + vai€63)

The other parameters needing updating are all re-
lated to the orientation density distribution and may

TEXTILE RESEARCH JOURNAL

be recalculated once Q(X;', ;) is known. These param-
eters include Kj, Kk, ,Ij’ I, Aj, Mji, Npjs and m;j,.
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